

of the CLUSTER for BASIC STUDIES FOR TRANSMUTATION

DECEMBER 5, 2001 CERN, GENEVA, SWITZERLAND

VOLUME III

First meeting of the Basic Studies for Transmutation BASTRA Cluster

HINDAS / n_TOF-ND-ADS / MUSE / ISTC / OECD-NEA

Date: Wednesday 5 December 2001;

Place: CERN, Geneva, Switzerland BUILDING: 864 (Lab 2; Prevessin/F)

Chairman: V. Bhatnagar; Co-chairman: P. Pavlopoulos

08:30	Welcome, Introduction and Approval of the agenda	V. Bhatnagar	
08:50	Presentation of the HINDAS Project (10'')	JP. Meulders	
	Experimental program from 20MeV to 200MeV (20")	N. Olsson	
	Experimental program from 200 MeV to 2 GeV (20")	K.H. Schmidt	
	Theoretical program (20")	J. Cugnon	
10:05	Coffee Break		
10:25	Presentation of the n_TOF-ND-ADS Project (15")	P. Pavlopoulos	
	The CERN Neutron TOF Beam (15")	A. Zanini	
	Experimental Set-up & Preliminary Results (20")	E. Gonzalez	
	Required Precision and Priority List of Elements (10")	Y. Kadi	
	ND Evaluation & Modelling (15")	H. Leeb	
11:40	Presentation of the MUSE Project	R. Soule + W. Gudowski	
12:15	Presentation from the Nuclear Data bank NEA/OCDE (Paris) The Route from Experiment to Evaluation	M. Kellett	
12:50	Lunch		
14:00	Presentation of the n_TOF ND Evaluation Network	W. Furman	
14:15	Presentation of the ISTC projects on Nuclear Data	15" each	
	#B70: Transmutation of LLFP and MA in a Sub-critical Assembly Driven by a Neutron Generator	S. Chigrinov	
	#1309: p- and n-induced X-sections of Pb and Neighbouring Nuclei in 20-200 MeV Region	N. Olsson + S. Yavshits	
	#1372: Radiochemical and Activation Analysis of LL Nuclear Waste Transmutation in FR and Accelerators	Y. Shubin	
	#1971 : n-Induced Fission X-section of Pu240, AM243 and W in the Range of 1-200 MeV	A. Laptev	
	#2002 : Yields of Residual Products in Thin Pb and Bi Targets by 40-2600 MeV Protons	V. Batyaev	
15:30	Coffee Break		
15:50	Discussion on the needs of nuclear data studies for ADS and coverage by FP5 and other projects	Animated by P. Pavlopoulos	
17:30	Actions to be taken		
18:00	Close of the meeting		

Project Affiliation - Address Tel. - Fax. - E-mail Name T. 32/14/33 227 SCK-CEN Boeretang 200 F. 32/14/42 1529 AIT ABDERRAHIM Hamid MUSE, ADOPT B-2400 Mol haitabde@sckcen.be ANDRIAMONJE Samuel n_TOF-ND-ADS CEA Saclay T. 33/1/690 85688 DSM/DAPŃIA/SPhN F. 33/1/690 87584 F-91191 Gif-sur-Yvette sandriamonje@cea.fr BATYAEV Vyacheslav ISTC - 2002 Laboratory of Fundamental Nuclear Tel: +7-095-123-6383, Physics Research Fax: +7-095-127-0543 Institute for Theoretical & Experimental E-mail: Yury.Titarenko@itep.ru Physics B.Cheremushkinskaya 25, 117218 Moscow, Russia **BAUMANN Paule** n_TOF-ND-ADS IReS-IN2P3 T. 33/3/8810 6533 Strasbourg-France paule.baumann@ires.in2p3.fr BECVAR Frantisek Charles University Prague T. 420/2/2191 2566 n TOF-ND-ADS Vholesovickach 2 becvar@mbox.troja.mff.cuni.cz CZ-Prague 8 **BERTHIER Bernard** n_TOF-ND-ADS IPN-IN2P3 Orsay T. 33/1/6915 7429 F-91406 Orsay Cedex F. 33/1/6915 4507 berthier@ipno.in2p3.fr BHATNAGAR Ved European Commission T. 32/2/299 5896 DG RTD F. 32/2/295 4991 Office MO75 5/51 Ved.Bhatnagar@cec.eu.int B-1049 Brussels **BLOMGREN** Jan HINDAS Uppsala University Dept of Neutron Research PO Box 525 Uppsala 75120 Sweden **BORCEA** Catalin n_TOF-ND-ADS CERN SL/EET T. 41/22/767 9132 CH-1211 Geneva 23 F. 41/22/667 7555 catalin.borcea@cern.ch BROEDERS Cornelis MUSE + ISTC B70, T 49/7247/822484 F7K 1309, 1372, 2002 Postfach 3640 F. 49/7247/823718 D-76021 Karlsruhe cornelis.broeders@irs.fzk.de CALVINO Francisco n_TOF-ND-ADS Nuclear Engineering, ETSEIB-UPC T. 34/9340 17143 F. 34/9340 17148 Diagonal 647 Francisco.Calvino@upc.es T. 41/22/767 9296 E-08028 Barcelona CENNINI Paolo n TOF-ND-ADS CFRN CH-1211 Geneva 23 F. 41/22/767 7555 Paolo.Cennini@cern.ch CHIGRINOV Sergey ISTC - B 070 Scientific & Technical Centre "Sosny" T. 375/172 467512 NAS F. 375/172 467712 Minsk-Sosny, 220 109 S.Chigrinov@SOSNY.BAS-NET.BY Belarus COLONNA Nicola n TOF-ND-ADS T. 39/80/544 2351 **INFN Bari** Bari, Italy F. 39/80/544 2470 nicola.colonna@ba.infn.it CUGNON Joseph HINDAS University of Liège T. 32/4/366 3601 Institute of Physics B.5 F 32/4/366 3672 Allée du 6 Août 17 J.Cugnon@ulg.ac.be B-4000 Sart Tilman, par Liège 1 DAHLFORS Marcus n TOF-ND-ADS CERN T. 41/22/767 5492 ZO 3000 F. 41/22/767 7555 CH-1211 Geneva marcus.dahlfors@cern.ch D'HONDT Pierre ADOPT SCK-CEN T 32/14/332200 Boeretang 200 F. 32/14/321529 B-2400 Mol phdondt@sckcen.be DURAN Ignacio n_TOF-ND-ADS Santiago de Compostela University duran@fpddux.usc.es E-15706 Santiago de Compostela FURMAN Walter n TOF-ND-ADS JINR T. 7/096/2166865 141980 Dubna, Moscow Region F. 7/096/2165425 Russia furman@nf.jinr.ru 34/91/346 6118 GONZALEZ-ROMERO Enrique n TOF-ND-ADS CIEMAT Τ. Anda Complutense, 22 F. 39/91/346 6576 E-28040 Madrid enrique.gonzalez@ciemat.es GUDOWSKI Waclaw MUSE, ADOPT **KTH Stockholm** T. 46/8/5537 8200 Royal Institute of Technology F. 46/8/5537 8465 S-106 91 Stockholm mobile : 46/73/656 0887

List of participants BASTRA Kick-off meeting at CERN, December 5, 2001

wacek@neutron.kth.se

Name	Project	Affiliation - Address	Tel Fax E-mail
		SCK-CEN	T. 32/14/33 2277
		Boeretang 200	F. 32/14/42 1529
AIT ABDERRAHIM Hamid	MUSE, ADOPT	B-2400 Mol	haitabde@sckcen.be
GUNSING Frank	n_TOF-ND-ADS	CEA Saclay	T. 33/1/6908 7523
		DSM/DAPNIA/SPhN F-911191 Gif-sur-Yvette	F. 33/1/6908 7584
		F-911191 GII-Sur-Yvelle	gunsing@cea.fr
HADDAD Ferid	HINDAS	Subatech	T. 33/2/5185 8467
		B.P. 20722	F. 33/2/5185 8424
		La Chantrerie, rue A. Kastler	haddad@subatech.in2p3.fr
		F-44307 Nantes	
HEIL Michael	n_TOF-ND-ADS	FZK	T. 49/7247/82 3984
		H. von Helmholtz Platz 1	F. 49/7247/82 4075
HUGON Michel		D-76344 Eggenstein European Commission	heil@ik3.fzk.de T. 32/2/2965719
		DG RTD	F. 32/2/2954991
		Office MO75 5/55	Michel.Hugon@cec.eu.int
		B-1049 Brussels	Michellingon@cec.ed.int
KADI Yacine	n_TOF-ND-ADS	CERN	T. 41/22/767 9569
		SL/EET	F. 41/22/767 7555
KÄPPELER Franz	n_TOF-ND-ADS	CH-1211 Geneva 23 FZK, IK	Yacine.Kadi@cern.ch T. 49/7247/3991
NALT LLEN FICH		D-76021 Karlsruhe	kaepp@ik3.fzk.de
KELLETT Mark	NEA	OECD Nuclear Energy Agency	T. 33/1/4524 1085
		12, bd. Des lles	F. 33/1/4524 1110
		F-92130 Issy-les-Moulineaux	kellett@nea.fr
LACOSTE Véronique	n_TOF-ND-ADS	CERN	T. 41/22/767 8165
		Z.O. 3000	F. 41/22/767 7555
		CH-1211 Geneva 23	veronique.lacoste@cern.ch
LAPTEV Alexander	ISTC 1971	Petersburg Nuclear Phys. Institute	T. 7/812/71 46444
		Gatchina, Leningrad Region	F. 7/812/71 36041
LE BRUN Christian	MUSE	188 300 Russia ISN Grenoble	laptev@pnpi.spl.ru T. 33/1/7628 4190
	WOSE	53, avenue des Martyrs	F. 33/1/7628 4004
		F-38026 Grenoble	lebrunch@isn.in2p3.fr
LEEB Helmut	n_TOF-ND-ADS	Atominstitut d.Österr.Universitäten	T. 43/1/58801/14258
	_	Technische Universität Wien	F. 43/1/58801/14299
		Wiedner Hauptsstrasse 8-10	leeb@kph.tuwien.ac.at
		A-1040 Wien	
MENGONI Alberto	n_TOF-ND-ADS	ENEA	T. 39/51/609 8306
		Applied Physics Div.	mengoni@bologna.enea.it
		V. Don Fiammelli, 2 I-40129 Bologna	
		1-40123 Bologna	
MEULDERS Jean-Pierre	HINDAS	Université Catholique de Louvain	T. 32/10/47 3273
		Institut de Physique Nucléaire	F. 32/10/45 2183
		Chemin du Cyclotron, 2	Meulders@fynu.ucl.ac.be
		B-1348 Louvain-la-Neuve	
MICHEL Rolf	HINDAS	Universität Hannover	T. 49/571/762 3312
		Zentrum für Strahlenschutz und	F. 49/511/762 3319
		Radioökologie	michel@ZSR.UNI-HANNOVER.DE
		Am Kleinen Felde 30	_
		D-30167 Hannover	T 10 10 171 00 10
OLSSON Nils	HINDAS	Uppsala University	T. 46 18 471 3043
		Dept of Neutron Research	F. 46 18 471 3853
		PO Box 525 Uppsala 75120 Sweden	Nils.Olsson@tsl.uu.se
PANCIN Julien	n_TOF-ND-ADS	CEA - CERN	T. 42/22/767 9886
		CH-1211 Geneva 23	iulien.pancin@cern.ch
PARADELA Carlos	n_TOF-ND-ADS	Santiago de Compostela University	T. 34/981/563 100
	-	Faculdad de fisica	F. 34/981/ext. 14000
		E-15706 Santiago de Compostela	paradela@fpddux.usc.es
PAVLOPOULOS Panagiotis	n_TOF-ND-ADS	Univ. of BASLE and CERN	T. 41/22/767 9564 & 41/79/201 0119
		CH-1211 Geneva 23	F. 41/22/767 7555
			Noulis.Pavlopoulos@cern.ch
PLAG Ralf	n_TOF-ND-ADS	FZK	T. 49/7247/823984
		H. von Helmholtz Platz 1	F. 49/7247/824075
		D-76344 Eggenstein	ralf.plag@ik.fzk.de
RAPP Wolfgang	n_TOF-ND-ADS	FZK	T. 49/7247/823 986
		H. von Helmholtz Platz 1	wrapp@ik3.fzk.de
		D-76344 Eggenstein	
			T 40/7247/82 2084
REIFARTH René	n_TOF-ND-ADS	FZK H. von Helmholtz Platz 1	T. 49/7247/82 3984 F. 49/7247/82 4075
			reifarth@ik3.fzk.de

Name	Project	Affiliation - Address	Tel Fax E-mail
Name	Flojeci	SCK-CEN	T. 32/14/33 2277
		Boeretang 200	F. 32/14/33 2277
		B-2400 Mol	haitabde@sckcen.be
AIT ABDERRAHIM Hamid	MUSE, ADOPT		
RUDOLF Gérard	n_TOF-ND-ADS	IReS-IN2P4	T. 33/3/8810 6290
RULLHUSEN Peter	n TOF-ND-ADS	Strasbourg-France	<u>qerard.rudolf@ires.in2p3.fr</u> T. 32/14/571 476
RULLHUSEN Pelei	II_TOF-ND-ADS	Retieseweg	F. 32/14/571 862
		D-2440 Geel	peter.rullhusen@irmm.jrc.be
SHUBIN Yuri	ISTC - 1372	State Scientific Centre of Russian	Tel: +7 (08439) 98611 Fax:
	1010 - 1072	Federation, Institute of Physics and	+7 (08439) 68225
		Power Engineering (SSC RF -IPPE),	shubin@ippe.obninsk.ru
		Bondarenko Sg 1, Obninsk 249033 RF	
		• •	
SCHMIDT Karl-Heinz	HINDAS	GSI	T. 49/6159/712 739
		Planckstrasse 1	F. 49/6159/712 785
		D-64291 Darmstadt	K.H.Schmidt@gsi.de
SLYPEN Isabelle	HINDAS	Université Catholique de Louvain	T. 32/10/47 3208
		Institut de Physique Nucléaire	F. 32/10/45 2183
		Chemin du Cyclotron, 2	slypen@fynu.ucl.ac.be
		B-1348 Louvain-la-Neuve	
SOULE Roland	MUSE	CEA Cadarache	T. 33/4/4225 4077
		DER/SPEx/LPE	F. 33/4/4225 7025
		Building 238	roland.soule@cea.fr
		F-13108 St. Paul-lez-Durance IPN-IN2P3 Orsay	T 22/4/0045 7420
STEPHAN Claude	n_TOF-ND-ADS	F-91046 Orsay Cedex	T. 33/1/6915 7429 F. 33/1/6915 4507
		F-91046 Olsay Cedex	stephan@in2p3.fr
	ISTC - 2002	Head of Laboratory of Fundamental	Tel: +7-095-123-6383.
ITTARENKO TUIT	1310 - 2002	Nuclear Physics Research	Fax: +7-095-127-0543
		Institute for Theoretical & Experimental	E-mail: Yury.Titarenko@itep.ru
		Physics	
		B.Cheremushkinskaya 25, 117218	
		Moscow, Russia	
VLACHOUDIS Vasilis	n_TOF-ND-ADS	CERN	T. 41/22/767 9851
		Div. SL	F. 41/22/767 7555
		CH-1211 Geneva 23	Vasilis.Vlachoudis@cern.ch
VOSS Friedrich	n TOF-ND-ADS	FZK	T. 49/7247/82 3986
	_	H. von Helmholtz Platz 1	F. 49/7247/82 4575
		D-76344 Eggenstein	voss@ik3.fzk.de
WENDLER Helmut	n_TOF_ND_ADS	EP Division	Tel.: +41 22 767 3851
		CERN	GSM.: +41 79 201 0565
		CH-1211 Geneva 23	Fax.: +41 22 767 3020
			Helmut.Wendler@cern.ch
YAVSHITS Sergey	ISTC 1309	V.G. Khlopin Radium Institute	T. 7/812/552 0185
		2nd Murinsky, 28	F. 7/812/247 8095
		194021 St. Petersburg	vav@mail.rcom.ru
		Russia	
ZANINI A		EP Division	T. 41/22/767 5461
	n_TOF_ND_ADS	CERN	F. 41/22/767 7555
		CH-1211 Geneva 23	Luca.Zannini@cern.ch

EXECUTIVE SUMMARY (Short Minutes)

Extract from Ved Bhatnagar's Mission report (internal)

The meeting proceeded with brief presentations of the three projects: HINDAS, n_TOF_ND_ADS and MUSE. In each case, the co-ordinators briefly outlined the objectives and scope of the work to be carried out in their projects followed by presentations made by work package leaders on the tasks that they are responsible for. Presentations were also made by 5 ISTC projects in this area including the one from Nuclear Data Centre at NEA. The aim of the discussion during and after the presentations was to highlight the issues that are of importance for nuclear data needs for an ADS and in particular the ones that are not being addressed in the presently running FP5 projects.

The main points of the discussion can be summarised as follows (Partially based on the slide that Noulis Pavlopoulos presented in the discussion)

- The Commission's initiative of clustering of related FP5 projects and facilitating exchange of information was highly appreciated. It was more so for the BASTRA cluster as not only the FP5 projects but also the ISTC related projects and OECD/NEA participation made the meeting more valuable.
- The nuclear (cross section) data bank at NEA/OECD is dealing with all kinds of cross section data, for all kinds of isotopes, in all energy ranges and for all kinds of applications. This has lead to a mammoth job which is becoming somewhat unwieldy and puts people off.
- It was suggested that the BASTRA cluster focus on the specific needs of nuclear cross section data for Accelerator Driven Systems for P&T. This implies reiterating (some information is already available from NEA) and listing the (Z,A) of the isotopes, nuclear reaction mechanisms and the energy range for which this data is required.
- There is a need to review and take stock of the situation of the data that already exist, the data that is being acquired and planned during the present FP5 and other projects on nuclear data. This would culminate in defining properly the future needs and efforts required in this direction. A sub group is proposed to be set up to work it out and for reporting (see below).
- It was suggested that the input data should have to be filtered by a quality control system (or criteria) before it is accepted for dissemination via the Nuclear Data for ADS (NUDADS) databank (name coined by myself!) possibly managed by NEA/OECD. The quality control parameters should be defined and may include ΔE/E, precision, completeness parameters etc.
- There should be more complete horizontal activities relating to interactions between authors of different theoretical models including transport codes so that they can sort out the reasons for discrepancies among different evaluations that are

accepted in the dedicated ADS database. In this context, source codes should be made available to other with due care of IPRs.

- There should be collaborative efforts so that specialists in certain areas or those implementing specialised techniques may also perform tests or measurements on samples coming from other institutions.
- Efforts should be made via financing of the fellowships such as Marie Curie or others so that young scientists are attracted to the field of nuclear data evaluation as veteran scientists become unavailable through natural wastage.
- It is proposed to establish several subgroups (2 or 3 persons each) which will report back to the cluster chairman on certain specific topics such as: (a) ADS designers' requirements for the nuclear data, (b) Sensitivity studies on nuclear cross section data, (c) Overlap of work being done at FP5 and ISTC projects in nuclear data, (d) Theoretical models etc.

The next meeting of the cluster is informally proposed (to be confirmed) to take place in Uppsala, Sweden on 13/14 September 2002 together with the progress meeting of HINDAS project.

The route from experiments to evaluation

M. Kellett and A. Nouri OECD Nuclear Energy Agency

Outline

- Data dissemination via the NRDC and EXFOR
- What should an Evaluation contain?
- Experimental needs and choices
- U-235 as an example of an evaluation
- The ENDF-6 format
- Nuclear models and processing codes

Nuclear Reaction Data Centres

- Main Four Data Centres are: NEA Data Bank, Paris
 NNDC Brookhaven National Lab, USA
 NDS International Atomic Energy Agency, Vienna CJD Obninsk, Russia
- Also includes:

JNDC and JAERI, Japan CNDC, China and KAERI, Korea and a number of other specialised centres in Russia

Areas of common interest

- CINDA
- EXFOR
- Evaluated libraries, JEFF, ENDF/B, JENDL, BROND, CENDL, etc.
- Database design and software
- Web retrieval interfaces and visualisation
- User services

EXFOR

- Co-ordination of compilation coverage of world-wide publications; neutron induced data "complete", charged particle being added retrospectively
- Discussion on coding rules/formats in order to maintain clarity for the user
- Checking of entry preparation prior to distribution, via NDS Vienna ftp site

EXFOR Data Format

- ASCII format for ease of transfer between systems
- Flexible coding of reactions
- Basic and computational format
- Use of first bibliographic **SUBENTRY** followed by data containing **SUBENTRIES**

ENTRY	10267 860	0620	10267000	1	
SUBENT	10267001 860	0620	10267001	1	
BIB	11	56	10267001	2	
INSTITUTE	(1USAORL)		10267001	3	
REFERENCE	(J,NSE,59,79,7602)		10267001	4	
	(J,ANS,15,481,7206))	10267001	5	
	(W,GWIN,7611) FINAL	L CROSS SECTION DATA.	10267001	6	
	(W,GWIN,7504) REVIS	SIONS AND ADDITIONAL DATA.	10267001	7	
AUTHOR	(R.GWIN, E.G.SILVER,	,R.W.INGLE,H.WEAVER)	10267001	8	
TITLE	MEASUREMENT OF THE	NEUTRON CAPTURE AND FISSION CROSS	10267001	9	
	SECTIONS OF 239-PU	AND 235-U, 0.02 EV TO 200 KEV, THE	10267001	10	
	NEUTRON CAPTURE CRO	OSS SECTIONS OF 197-AU, 10 TO 50 KEV	,10267001	11	
	AND NEUTRON FISSION	N CROSS SECTIONS OF 233-U, 5 TO	10267001	12	
	200 KEV.		10267001	13	
FACILITY	(LINAC) OAK RIDGE H	ELECTRON LINEAR ACCELERATOR	10267001	14	
INC-SOURCE	(PHOTO) PHOTONEUTRO	ONS. ENERGY DEPENDENCE OF NEUTRON	10267001	15	
FLUX MEASURED USING B-10 (N,ALPHA) REACTION AND ITS 1026700					
	10267001	17			
	EVALUATION.		10267001	18	
METHOD	DIRECT DETECTION		10267001	19	
	(COINC) COINCIDENC	CE COUNTING	10267001	20	
DETECTOR	(SCIN) LIQUID SCIN	FILLATION DETECTOR	10267001	21	
	(FISCH) FISSION CHA	AMBER	10267001	22	
ERR-ANALYS	THE UNCERTAINTIES	SHOWN ON THE DATA ARE STANDARD	10267001	23	
	DEVIATIONS AND REP	PRESENT THE PRECISION OF THE	10267001	24	
	EXPERIMENTS AND TH	HEIR ANALYSIS AND DO NOT	10267001	25	
	INCLUDE SYSTEMATIC	C ERRORS. THE PRECISION WAS	10267001	26	

. . .

	THE NEUTRON FLUX. THIS IS 4.0PER-CENT ABOVE 80.KEV.TO	10267001	35	
	THESE MUST BE ADDED ERRORS IN THE NEUTRON CROSS-	10267001	36	
	SECTIONS USED FOR NORMALIZATION AND THE ENERGY	10267001	37	
	DEPENDENCE OF THE B-10(N,ALPHA) CROSS-SECTION. FOR TH	E10267001	38	
	VALUE OF ALPHA (CAPTURE-FISSION RATIO) A FRACTIONAL	10267001	39	
	UNCERTAINTY EQUAL TO(0.02*(1.0+ALPHA)/ALPHA) SHOULD B	E10267001	40	
	COMBINED WITH THE PRECISION ERRORS IN THE DATA TABLES	.10267001	41	
ERRORS IN THE CAPTURE CROSS-SECTION SHOULD BE OBTAINED1026				
	FROM THE COMBINED ERRORS IN THE FISSION CROSS-SECTION	10267001	43	
	AND ALPHA. THE ERROR IN THE RATIO OF NEUTRON CROSS-	10267001	44	
	SECTIONS INCLUDED AN UNCERTAINTY OF 0.5PER-CENT FOR	10267001	45	
	THE NORMALIZATION OF EACH ISOTOPE, 1.0PER-CENT FOR	10267001	46	
	THE U-235 FISSION CROSS-SECTION AT THERMAL ENERGY AND	10267001	47	
	0.5PER-CENT FOR THE PU-239 FISSION CROSS-SECTION AT	10267001	48	
	THERMAL ENERGY. A 1.0PER-CENT ERROR IS ASSUMED IN THE	10267001	49	
	U-233 FISSION CROSS-SECTION NORMALIZATION.	10267001	50	
STATUS	(APRVD) APPROVED BY R.GWIN 79/2/13.	10267001	51	
HISTORY	(721209C)	10267001	52	
	(750422A) BIB CHANGES	10267001	53	
	(760520A) DATA UPDATED AND ADDED	10267001	54	
	(770201U) CORRECTED VOLUME NO. IN MAIN REFERENCE.	10267001	55	
	(781205A) CONVERTED TO REACTION FORMALISM.	10267001	56	
	BIB CORRECTIONS.	10267001	57	
	(860620A) BIB UPDATE.	10267001	58	
ENDBIB	56	10267001	59	
NOCOMMON	0 0	10267001	60	
ENDSUBENT	59	1026700199	999	

. . .

SUBENT	102670	06 781	205			10267006	1
BIB		3	3			10267006	2
REACTION	(92-U-235	(N,F),,SIG	,,AV)			10267006	3
STATUS	(DEP,1026	7024)				10267006	4
HISTORY	(781205A)	DATA FROM	20-100 KE	V DELETED,	SEE 10267030.	10267006	5
ENDBIB		3				10267006	6
NOCOMMON						10267006	7
DATA		4	20			10267006	8
EN-MIN	EN-MAX	DATA	DATA-ER	R		10267006	9
KEV	KEV	В	В			10267006	10
0.1	0.2	20.47	0.17			10267006	11
0.2	0.3	19.74	0.07			10267006	12
0.3	0.4	12.75	0.04			10267006	13
0.4	0.5	13.12	0.09			10267006	14
0.5	0.6	14.66	0.09			10267006	15
0.6	0.7	11.11	0.09			10267006	16
• • •							
2.0	3.0	5.14				10267006	21
3.0	4.0	4.58				10267006	22
4.0	5.0	4.08	0.06			10267006	23
5.0	6.0	3.72	0.05			10267006	24
6.0	7.0	3.14	0.02			10267006	25
7.0	8.0	3.05	0.03			10267006	26
8.0	9.0	2.88	0.01			10267006	27
9.0	10.0	3.01	0.01			10267006	28
10.0	20.0	2.46	0.03			10267006	29
100.0	200.0	1.49	0.02			10267006	30
ENDDATA		22				10267006	31
ENDSUBENT		30				102670069	9999

EXFOR Reaction coding

- Reaction 92-U-235(N,F), (N,XN), (P,XN)...
- Cross section data SIG
- Differential data DA, DE, DA/DE
- Fission product yield FY
- Others NU, ETA, EN, WID etc...

EXFOR Compilation- How it works

- Readers/compilers in the NRDC "find" articles, by scanning journals/publications
- Bibliographic information is added and tabulated data if shown, otherwise
- Data extraction from figures:
 - Recent publications: author contacted for tabulated data
 - Older publications are digitically scanned

Data Storage and Retrieval

- NEA uses Oracle relational database for: CINDA, EXFOR and EVALUATED data allows use of Perl scripts with SQL for retrieval/loading
- NEA uses Perl/CGI for online access: gives direct communication between WWW and Oracle, EXFOR online plotting using JavaScript in place, JEF-PC re-design will allow ~full visualisation capabilities, beta test version of JANIS available now

Conclusions - EXFOR

- EXFOR/CINDA give access to world-wide experimental data
- CINDA allows quick access to find references
- EXFOR gives complete information on the experiment and its results
- EXFOR gives information essential to the evaluation/validation process of nuclear data files, but updates can sometimes be delayed

What should an evaluation contain?

- An evaluation should contain all nuclear data needed to perform transport calculations (fixed source or eigen value), depletion calculation... for the entire energy range
 - cross-sections

- activation x-s
- energy distributions $-\gamma$ production
- angular distribution
- Decay data, Fiss.yields

What goes into an evaluation?

- Experimental data are a necessary input (direct input or from benchmarks) but not sufficient
- Model codes are extensively used:
 - to parameterize the data (resonance range)
 - to predict data (above URR)

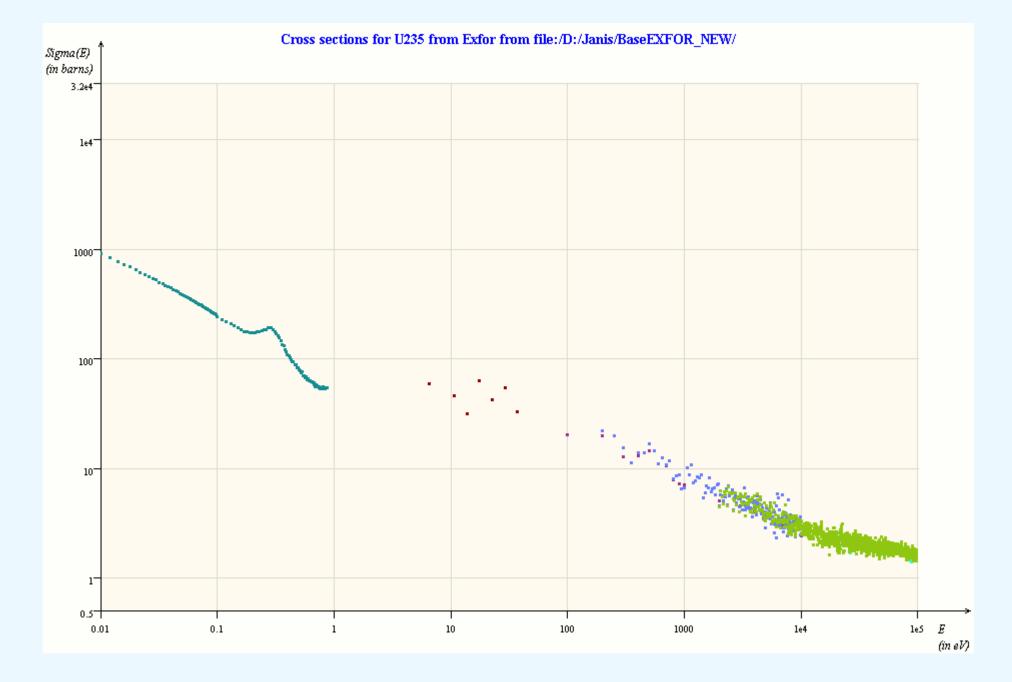
The need for different experiments

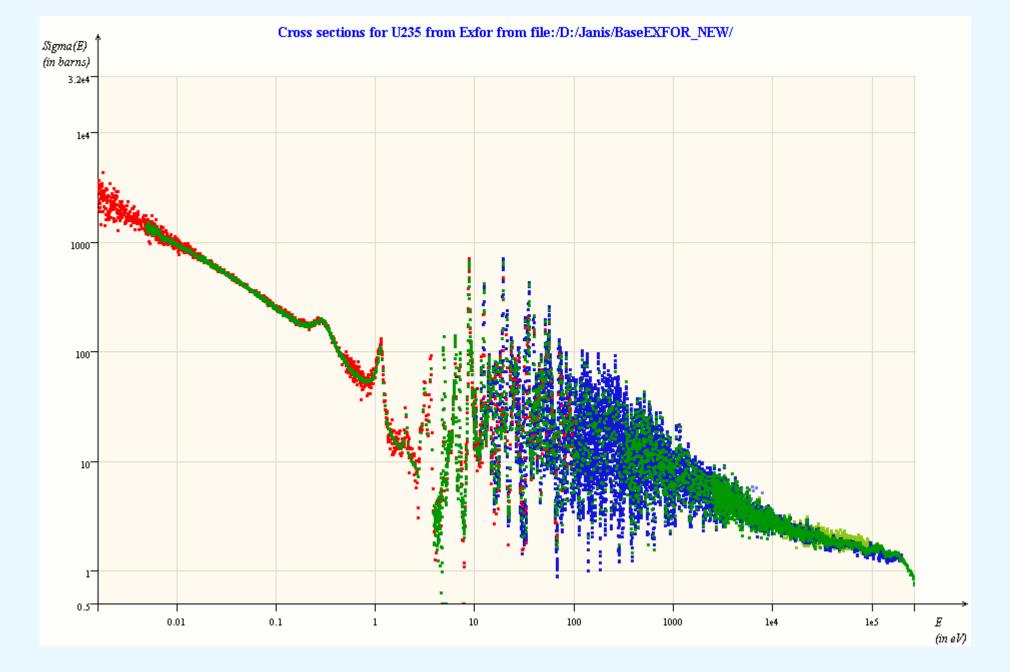
- Different flight paths
- Different sample thicknesses (case of resonance structure)
- Transmission/Capture/Fission/multiplicity energy-angle correlations
- Possibly at low temperature (Doppler)

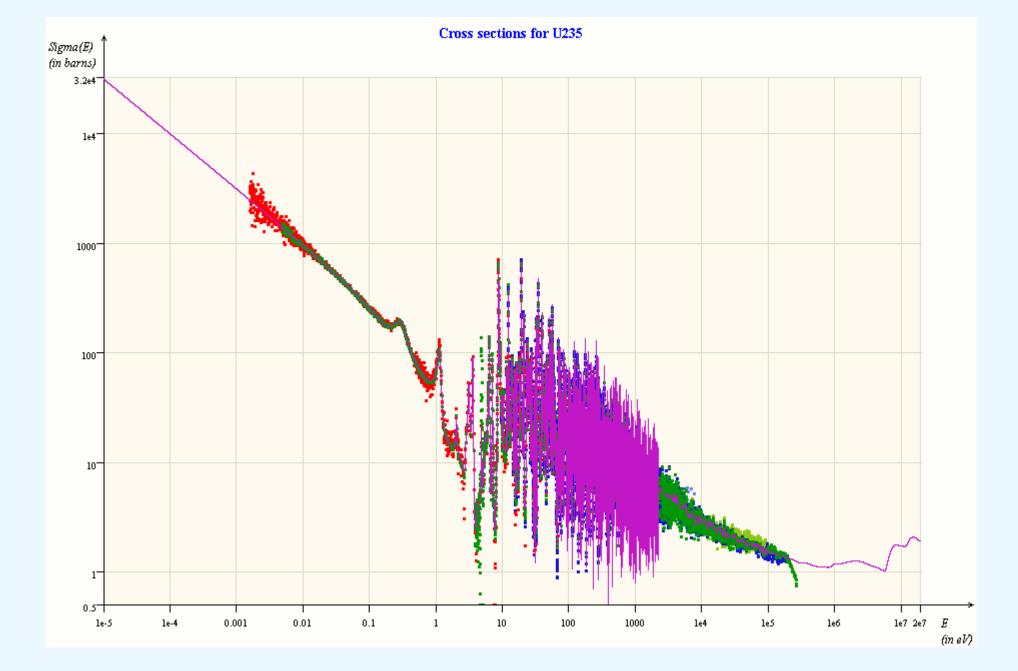
Choice of experimental data

- The evaluator has fragmented measurements performed under different experimental conditions:
 - experimental results are not always consistent (normalisation problems)
 - experimental data do not cover the whole energy range and do not contain information on all processes

U-235 experimental datasets

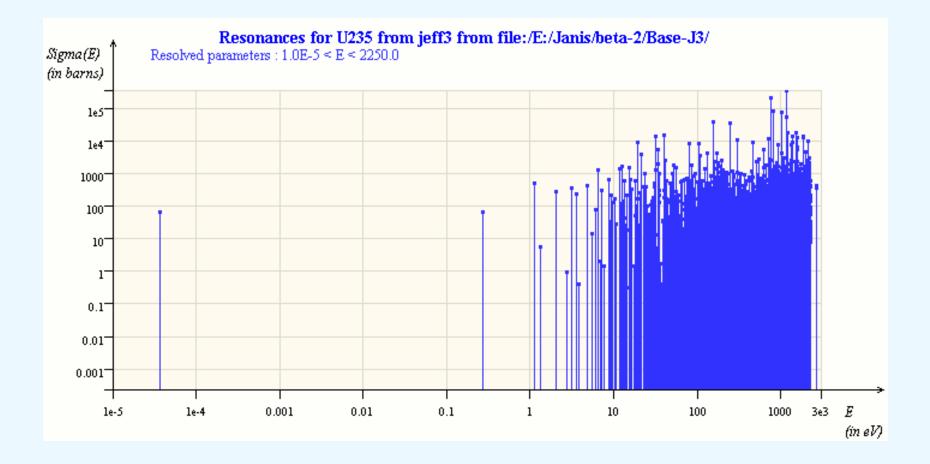

- The following slides show the datasets available for the recent U-235 fission cross section evaluation work
- Datasets do not generally cover the complete range in energy
- In some cases there are more than one dataset for the same or overlapping energy ranges
- The evaluation process takes these datasets as a starting point to produce one reduced set of data, assumed to be the best normalised average of all those available
- The last plot shows the experimental datasets with the final evaluation (plotted in purple)

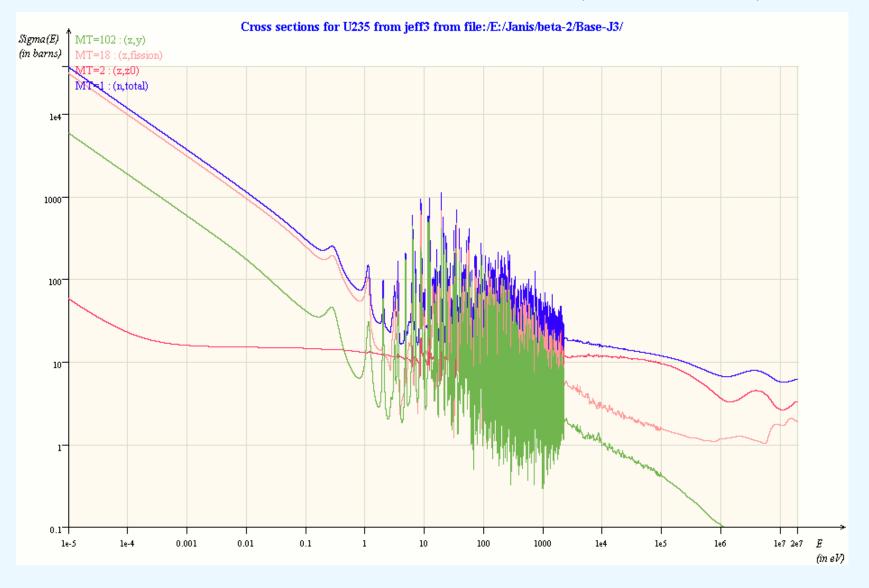

U-235 evaluation (≤ 2.25 keV)

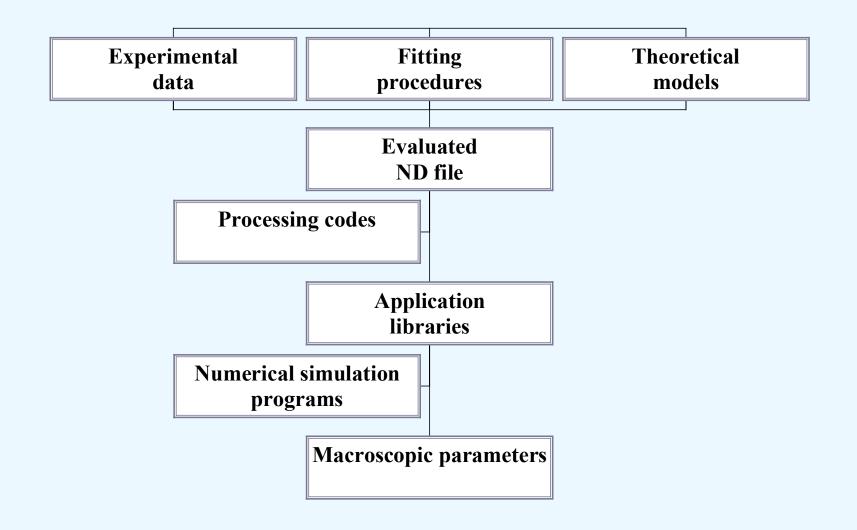

- <u>Transmission</u> data of Harvey et al. on the ORELA 18-meter flight path, with sample thickness of 0.03269 atoms/barn, cooled to 77 K (0.4 to 68 eV).
- <u>Transmission</u> data of Harvey et al. on the ORELA 80-meter flight path, with sample thickness of 0.00233 atoms/barn, cooled to 77 K (4 to 2250 eV).
- <u>Transmission</u> data of Harvey et al. on the ORELA 80-meter flight path, with sample thickness of 0.03269 atoms/barn, cooled to 77 K (4 to 2250 eV).

U-235 evaluation (≤ 2.25 keV)

- <u>Fission</u> data of Schrack on the RPI Linac at 8.4-meter flight path (0.02 to 20 eV).
- <u>Fission</u> data of Wagemans et al. on the Geel 18-meter flight path (0.001 to 1.0 eV)
- <u>Fission</u> and <u>capture</u> data of Perez et al. on the ORELA 39-meter flight path (0.01 to 100 eV).
- <u>Eta</u> data of Weigmann et al (0.0015 to 0.15 eV).
- <u>Absorption</u> and <u>fission</u> data of Gwin at ORELA (0.01 to 4.0 eV).




Data analysis


- Nuclear reaction theory (R matrix in the thermal and resonance range) is used to parameterize experimental data
- Probabilistic theory (Bayes theorem) allows the best fit to obtained for a series of measurements

U-235 evaluation (ORNL)

U-235 evaluation (ORNL)

Evaluated Data Files (1)

- Evaluations (common format: ENDF-6):
 - ENDF/B-VI, JEF2.2, EFF2.4, JENDL-3.2, CENDL-2.1, BROND-2.2
 - Initially for neutron induced reactions
 - General Purpose file: x-s, resonance parameters, angular and energetic distributions for E < 20 MeV
 - Special purpose files for Decay data, FP yields, Thermal scattering data...

Evaluated Data Files (2)

• Extensions to higher energies (up to about 200 MeV for neutrons)

- Extensions to other particles
 - Proton, deuterium, alpha...

Evaluated Data Files (3)

- 1 General information, neutron fission multiplicity
- 2 **Resonance parameters**
- **3 Pointwise cross-sections**
- **4-6 Energy-angle correlations**
- 7 Thermal Scatteing Data
- 8 Decay Data and Fission Product yields
- **30-40** Covariance data

Computer Programs

- Analysis codes
 - Resonance range : SAMMY, REFIT...
 - Higher energies : ECIS, ALICE, CASTHY, CASCADE...
- Format and physics evaluation checks
 - ENDF utility codes (Brookhaven)
- Processing codes
 - NJOY, PREPRO, CALENDF
- Visualisation tools: JEF-PC, JANIS

Code and model comparisons

- Average resonance parameters
- Fission cross-section calculations
- Coupled Channel Model Study
- Spherical Optical and Statistical Model Study
- Hauser-Feshbach calculations
- Intermediate Energy nuclear models
- Intra-Nuclear Cascade models

Conclusions - Evaluations

- The evaluation process involves:
 - taking data from many sources
 - analysis and comparison
 - theory to complement the available data
 - tools allowing checking/processing/benchmarking
- The final evaluation contains complete data for all reaction channels, all energies (<20MeV), i.e. cross sections, distributions, fission data, etc.

NEA Activities

- Gives centralised access to experimental data
- Overseas the JEFF evaluation project
- Sponsors the WPEC group (world-wide evaluation co-operation)
- Distributes ALL evaluated libraries and codes for processing/bench-marking etc.
- Carries out benchmark exercises for nuclear data and codes and provides training in their use

The role of the NEA Data Bank

- To be the international centre of reference for its Member countries with respect to basic nuclear tools, such as validated computer codes and nuclear data, and to provide a direct service to its users by developing, improving and validating these tools and making them available as requested
- Services are provided free of charge

http://www.nea.fr/html/databank

OECD (()

🏥 – 🗗 ×

Nuclear Energy Agency - Agence pour l'énergie nucléaire

THE DATA BANK

TI

PUBLICA HONS Press Communiqués

.

<u>CTIVITIES</u>

ite Search

What's New

<u>Nuclear Safety</u> <u>Radioactive Waste</u> <u>Radiation Protection</u> <u>Nuclear Development</u> <u>Nuclear Science</u> <u>Nuclear Law</u> <u>Joint Projects</u> <u>Eastern Europe</u> Sustainable Development

ATA BANK

<u>Nuclear Data</u>

- <u>Exfor</u> Eva

<u>Cinda</u> TDB Proiect

Computer Programs

NEOUT THIS SITE

<u>Site Map</u> <u>Staff Contacts</u> <u>Vacancies</u> <u>Practical Information</u> <u>Links</u>

The Goal:

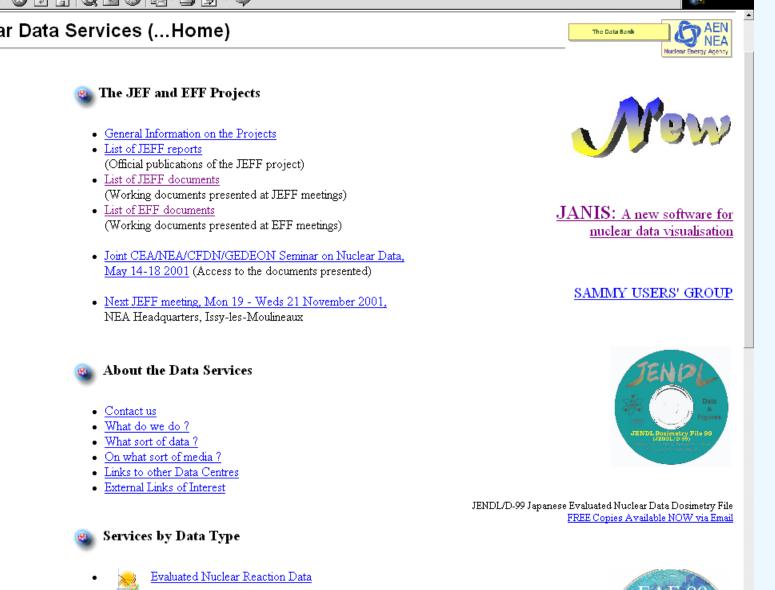
To be the international centre of reference for its Member countries with respect to basic nuclear tools, such as validated computer codes and nuclear data, and to provide a direct service to its users by developing, improving and validating these tools and making them available as requested.

The Objectives:

To be a central repository for its Member countries.

- To develop internationally validated computer programs and nuclear data.
- To provide a direct service of the highest quality.
- To assist Member countries in maintaining nuclear know-how.

o Programme of Work


- Cooperation with other parts of the NEA programme
- Related Publications
- E-Mail Contacts

Data Bank Services

http://www.nea.fr/html/dbdata

↓ • → • 🛛 🗗 🟠 🕄 🖬 🏈 🔂 • 🗿 🗹 • 🌳

Nuclear Data Services (...Home)

Experimental Nuclear Reaction Data

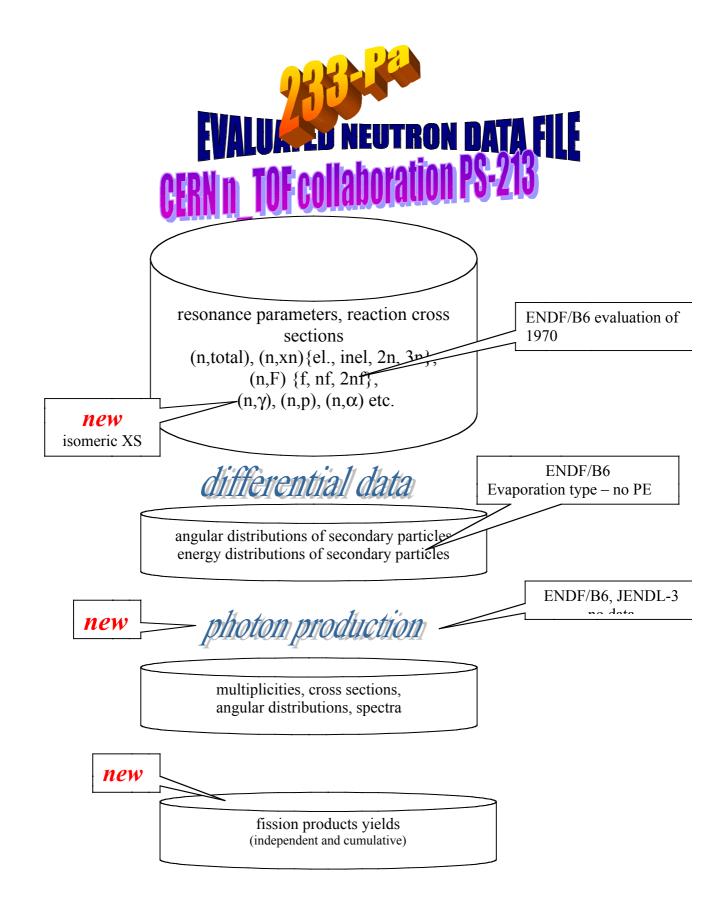
EVALUATION OF NEUTRON X-SECTIONS OF ²³³Pa AND CREATION OF THE RESPECTIVE ND FILE

¹A. Goverdovski, ²O. Grudzievich, ²D. Klinov, ¹V. Piksaikin

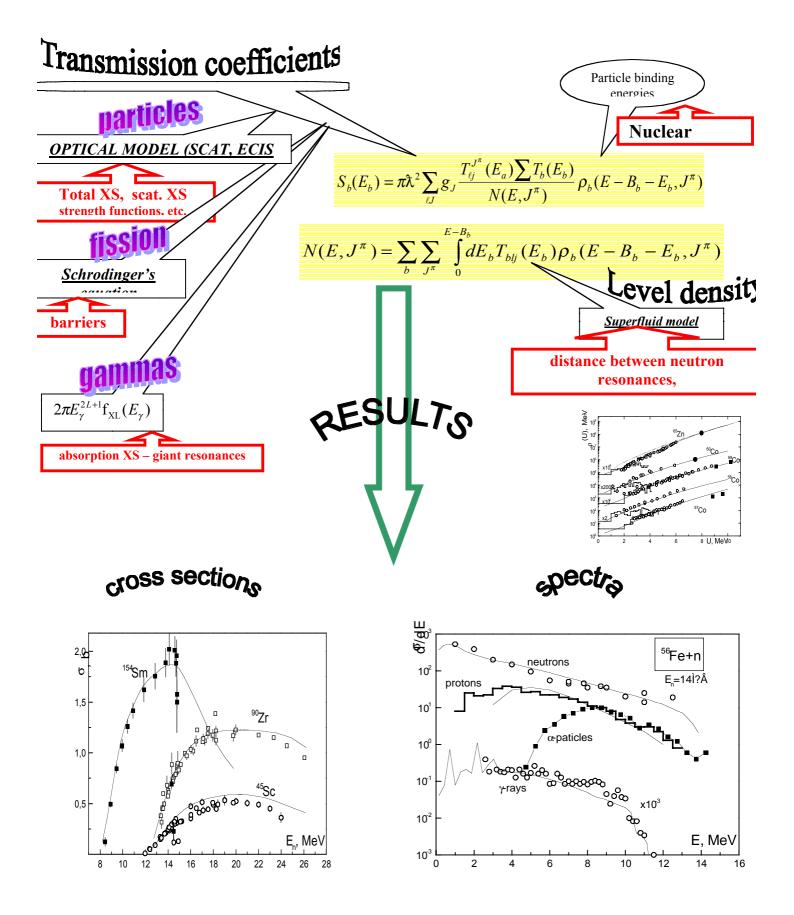
1- IPPE, Obninsk, Russia, 2- IAE, Obninsk, Russia

Presented by W. Furman on the behalf of the n TOF collaboration

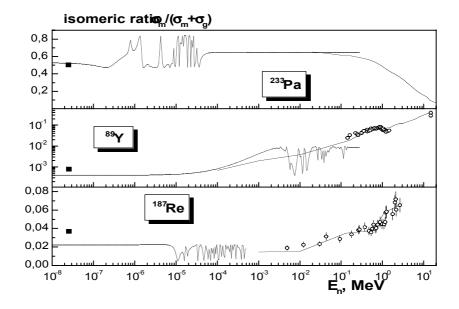
Why ²³³Pa ?


and why now?

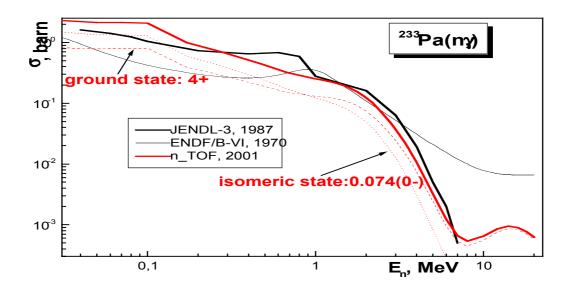
 232 Th + n \rightarrow 233 Th \rightarrow 233 Pa \rightarrow 233 U


$$T_{1/2}$$
 (²³³Pa) = 26.97 d

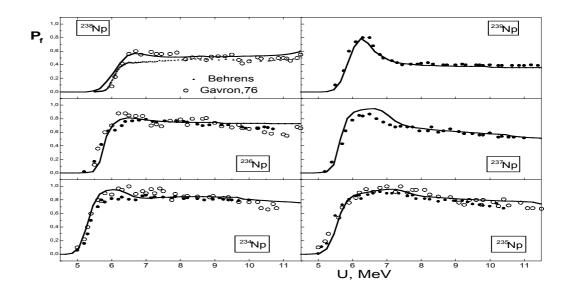
Target for experiments at n_TOF CERN facility - ?


So an evaluation of ND file for ²³³Pa is very actual !

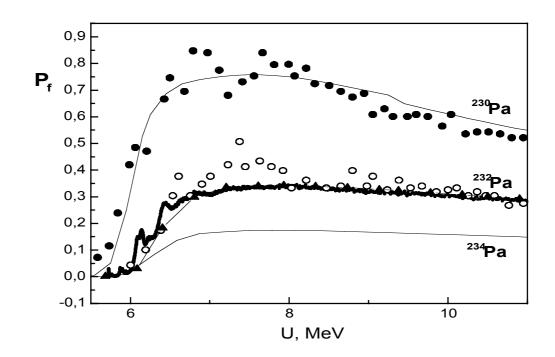
JIALKE CODE 2121FW



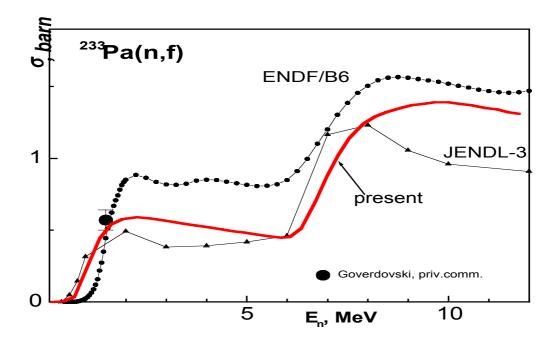
t is possible to fix the set of parameters for description of neutron radiative capture with aid of the energy dependence of the isomeric ratios


Isomeric ratios of neutron radiative capture by ¹⁸⁷Re, ⁹⁰Y and ²³³Pa nuclei. Curves – calculations on the basis of the statistical model with account for

So the predicted energy dependence of the neutron radiative capture cross-section on ²³³Pa is next



The cross-section of 233 Pa(n, γ).


Fission cross-sections

Fission probabilities of neptunium isotopes in dependence of excitation energy of fissioning nucleus from the reactions (³He,df), (³He,tf) _ (n,f). Points- experimental data from [6.7], curves – results of calculation.

Fission probabilities of the odd-odd Pa isotopes in dependence of excitation energy of fissioning nucleus Points – experimental data from [6.7], curves – results of present calculation.

The predicted cross-section of ²³³Pa(n,f) reaction.

Current status of complete file of evaluated neutron data for ²³³Pa

Ν	Stage	Status	What and Where ?
1.	exp. data compilation and analysis	done	resonance parameters
2.	libraries analysis	done	ENDF/BVI, JENDL-2,
			JEF-2
3.	theor. model verification and	done	STAPRE code system
	parameters		
	fitting		
4.	calculations of neutron XS's, analysis	done	
5.	complete file compilation	Done	
6.	file format testing	Done	CHEKR code
7.	physical testing	Done	FYZCON, PHYHE code
8.	file presentation	done	n_TOF Meeting

1ST MEETING OF THE CLUSTER for BASIC Studies For TRANSMUTATION

TEXT MISSING

DECEMBER 5, 2001 CERN, GENEVA, SWITZERLAND

REPORT on ISTC Projects: # 540 # 1309 # 2213

On behalf of the authors presented by

N. Olsson

Cross sections for (p,f) and (n,f) at 20 – 200 MeV

V.P. Eismont et al., KRI

Past: ISTC #540 (1997 – 99)

- Thin-film breakdown counters (TFBC):
 - for ²⁰⁹Bi, ²³²Th, ²³³U, ²³⁷Np, ²³⁹Pu, ²⁴³Am (relative to $\overline{^{235,238}U}$)
 - for ¹⁸¹Ta, ^{nat}W, ¹⁹⁷Au, ^{nat}Hg, ^{nat}Pb, ²⁰⁸Pb (relative to ²⁰⁹Bi)
 - All at 21 174 MeV

- 2. Frisch-gridded ionization chamber:
 - _ and fragment ang. dist. for ²⁰⁹Bi, ²³²Th, ²³⁸U
 - All at 20 160 MeV
- Conclusions from ISTC #540:
 - Data for conceptual ADS OK, except for subactinides (around Pb)
 - Better standards needed; 235,238 U, 209 Bi (5 á 10%)
 - Further systematic studies needed for better modelling near Pb
 - (p,f) vs. (n,f) gives dependence on nuclear fissility

Present: ISTC #1309 (1999 – 2002)

- Focus on near Pb nuclei
- Pb-target in ADS: Fission contributes 10 15% of residual activity after 1 year cooling
- ²⁰⁹Bi adopted as standard; _ should be improved
- Thus,
 - Measure _ for (n,f) and (p,f) on ²⁰⁵Tl, ^{204,206,207,208}Pb, relative to ²⁰⁹Bi(n,f) or (p,f)
 - Measure (n,f) and (p,f) under similar conditions
 - TFBC for cross sections
 - Frisch-gridded ionization chamber for _, LMT, angular-, energy- and mass distributions
 - Many targets simultaneously

Future: ISTC #2213 (2002 –)

- Measure (p,f) and (n,f)
- Natural tungsten and W-isotopes
- Similar experimental conditions
- Energy 50 200 MeV

ISTC Project # 1372

Complex Radiochemical and Activation Analysis of Long-lived Nuclear Waste Transmutation in Fast Reactors and in the Beams of High Energy Accelerators

Leading Institution: SSC RF *IPPE* (Institute of Physics and Power Engineering, Obninsk).

Supporting Institution JINR (Joint Institute for Nuclear Research, Dubna)

Foreign Collaborators

Prof. Waclaw Gudowski, Royal Institute of Technology, Department of Nuclear and Reactor Physics, Stockholm, Sweden,

Dr. Cornelis H.M. Broeders, Institute of Reactor Safety Forschungszentrum, Germany,

Dr. Ved P. Bhatnagar, European Commission Directorate General Research, Brussels, Belgium.

Project Duration 30 months . Expected start date 1 12.2001.

Total budget: 400,000 Euro.

Specific features

The specific feature of the ISTC Project 1372 "Complex Radiochemical and Activation Analysis of Long-lived Nuclear Waste Transmutation in Fast Reactors and in the Beams of High Energy Accelerators"

is that to the moment of the Project formulation we had already the set of the samples made of the separate isotopes of transuranium elements. The samples have been irradiated earlier in the industrial reactor BN-350 with fast neutron spectrum. The irradiation experiment conditions were described in detail, and also the control samples were kept safely containing the same isotopes, which have been irradiated in the reactor. At the moment these experiments are unique and can not be repeated at the industrial reactors in operation because the new safety regulations have been adopted, and these new rules make practically impossible to perform such experiments.

The investigation of the samples, irradiated in the reactor, the control samples and the samples irradiated in the high-energy accelerator beams using radiochemistry and nuclear physics methods will give the unique experimental data. These experimental data on a wide range of the isotopes being analysed in combination with theoretical investigations will increase the possibility of the reliable transmutation process evaluation and enable to have recommendations on the long-lived radioactive waste management.

Main tasks

1. Radiochemistry investigations and nuclear physics measurements of the isotope content changes in the samples of minor actinides, irradiated during several series of the experiments in the BN-350 reactor with fast neutron spectrum.

2. Investigations of actinide transmutation in BN-350 fast reactor.

3. Creation of complete data files with the evaluated neutron cross-sections for Pu-240, Np-237 and Am-241 isotopes up to 150 MeV.

4. Transmutation research in proton beams of the accelerating complex of the Laboratory of High of JINR.

Scope of activity

- Fabrication of radioactive targets for irradiation in the proton beams of the accelerator complex of the Laboratory of High Energies of the JINR; fabrication of radiators for solid-state track detectors from the depleted and enriched uranium mono-layers.

the radiochemical analysis of the samples irradiated in the reactor BN-350 for a content of fission fragments, heavy nuclide isotopes and the parent isotope residues after irradiation in the reactor;

- the investigation of the samples after the long term irradiation in the reactor with the nuclear physics methods (α -, β -, γ -spectroscopy and mass spectral methods);

- analysis of conditions and parameters of the samples irradiation in the reactor;

- - calculation of neutron fields and their changes during burn-up processes and the core re-loading; the expected nuclide composition of the samples;
- the evaluation of realistic errors;
- the comparison of theoretical and experimental results, self-descriptiveness evaluation of the experiments carried out;
- the conclusions about the neutron data accuracy for minor actinides and a reliability of actinide transmutation calculations in fast reactors.

The determination of generalised optical model parameters for calculation of cross-sections of elastic and inelastic interaction of neutrons and light charged particles with minor actinides' nuclei;

The selection of the optimal parameters of the pre-equilibrium evaporation model for description of angular distributions and spectra for neutrons and charged particles emitted by highly excited nuclei;

Development of the consistent fission model of actinides for calculation of multiple-chance fission cross-sections as well as spectra and fission neutron multiplicity.

Compilation of experimental data and available evaluations of reaction crosssections for ²⁴⁰Pu, ²³⁷Np, and ²⁴¹Am in the energy range up to 200 MeV. Analysis of total, absorption neutron cross-sections and elastic neutron scattering angular distribution for incident neutron energies up to 150 MeV. Calculation and analysis of integral cross-sections for inelastic interactions of neutrons with nuclei.

Fission cross-section analysis. Theoretical modelling and calculations of fission cross-sections and the average number of neutrons per fission in the neutron

energy range up to 150 MeV. Evaluation of prompt fission neutron spectra. Calculations of angular distributions, full spectra and fission neutron multiplicity.

Charged particle emission analysis. Calculations of the production crosssections, spectra and angular distributions for protons, deuterons, tritons and α particles in the incident energy range up to 150 MeV. Evaluated neutron data file formation for ²⁴⁰Pu, ²³⁷Np, and ²⁴¹Am up to neutron energies 150 MeV in the ENDF/B-VI format. Format and physical testing of the created files.

Measurements of the neutron spectra generated by high energy protons in the uranium-lead target. The determination of fission fragment yields with the use of solid-state track detectors and the gamma-activity measurement of activation detectors. Processing, analysis and interpretation of the experimental results. Experiments in proton beams in the energy range from 500 MeV up to 2000 MeV to research the radioactive waste transmutation: I-129, Np-237, Am-241, U-234, and Pu-238.

The simulation of the experiment conditions with the uranium-lead target in beams of the accelerator complex of LHE taking into account the target geometry and material, blanket and detectors, proton beam's energy and profile. The comparison of theoretical and experimental results and their interpretation. Experimental data analysis of neutron yields and energy deposition by the program package "Cascade LAHET and comparison with MCNPX" in neutron yields, spectra and angular distributions, the experimental data application for the complex "Cascade" advancement. Data base development on integral interactions of nucleons and mesons with nuclei.

The systematisation and analysis of data on actinide and fission product transmutation cross-sections in proton beams of high energy accelerators. Evaluation of reaction rates in the isotopes being transmuted, comparison with experimental results and predictions of various programs. The computer codes modification.

Expected results and their applications

The following scientific and practical results are expected during the project implementation:

- new methods of extraction, deep purification and analysis of radioactive nuclides;

- radioactive targets for the transmutation research in the high energy accelerators;

- radioactive samples and targets for the whole set of the experiments;

- procedures of a radio-nuclide composition research of various materials under fast reactor neutron irradiation based on the technique of needle and capillary type samples;

- experimental data on isotopic composition of the actinide samples after the long irradiation in BN-350 reactor;

- data for mathematical simulation in the fast reactor;

- experimental data on nuclide contents in the radioactive samples and targets after the irradiation by alternative methods;

-the analysis and comparison of the major nuclides concentration with the use of theoretical as well as experimental methods: radiochemical and nuclear physical ones; -the complete files of the evaluated neutron cross-sections for Pu-240, Np-237, Am-241 at the neutron energies up to 150 MeV;

-the determination of transmutation parameters on the basis of the measurement results, calculation and theoretical analysis of the obtained experimental data, reliability evaluation of constants, calculation methods of description and efficiency evaluation of the actinide transmutation processes in fast reactors;

- software testing for simulation of the transmutation processes in the heavy targets made of lead and natural uranium;

- models, calculation methods and the calculated cross-sections of the most important reactions induced by protons and high energy neutrons.

_

The confidence in successful realisation of these tasks is based on the experience accumulated during many years activity in the field of nuclear data evaluation:

-MENDL-2 and MENDL-2P activation data libraries, which contain more than 120,000 reactions induced by neutrons with the energies up to 100 MeV, and by protons with the energies up to 200 MeV for more than 500 stable and unstable nuclei, having the half-life more than 1 day, in the mass region from Al to Po, have been produced.

-The cross section evaluation for the reactions induced by neutrons and gamma-quanta on the most long-lived fission products in the energy region up to 50 MeV have been performed.

-The long-lived activity and residual product accumulation in the heavy metal liquid ADS targets have been estimated and used for the designing of the first leadbismuth ADS 1 Mwt target manufactured in IPPE.

-In collaboration of IPPE with the Royal Institute of Technology the complete neutron and proton files of evaluated reaction cross sections in the energy region up to 150 MeV have been created for U-238, Th-232 and neutron file for Pu-239.

The results obtained during this project implementation can be used in Russia as well as in other countries which develop large-scale nuclear power and apply the nuclear engineering for solving the ecological problems.

References:

- V.N. Koscheev, G.N. Manturov, M.N.Nikolaev, A.M. Tsiboulia, S.M. Bedniakov, V.A. Dulin, Yu.S. Khomiakov. Nuclear Data For Plutonium And Minor Actinides. In: Proc. 3d Conf. on Accelerator Driven Transmutation Technology, Prague, 1999, Report We-I-15.
- A.V. Ignatyuk, V.P. Lunev, Yu.N. Shubin, E.V. Gai, N.N. Titarenko, A. Ventura, W.Gudowski. Neutron Cross Section Evaluation for ²³⁸U up to 150 MeV. *Nuclear Science and Engineering*, 2000, v. 136, pp. 340-356.
- A.V. Ignatyuk, V.P. Lunev, Yu.N. Shubin, E.V. Gai, N.N. Titarenko, W. Gudowski. Neutron and Proton Cross Section Evaluation for ²³²Th up to 150 MeV. *Nuclear Science and Engineering*, 2001, to be publ.
- Yu.N. Shubin, A.V. Ignatyuk, A.Yu. Konobeyev, V.P. Lunev, E.V. Kulikov, The Analysis of Energy Release, Beam attenuation, Radiation Damage, Gas Production and Accumulation of Long-Lived Activity in Pb and Pb-Bi Targets., Proc. Second Conf. on Accelerator-Driven Transmutation Technologies and Applications., June 3-7, 1996, Kalmar, Sweden. Vol. 2, pp. 953-959.
- Yu.N. Shubin, V.P. Lunev, A.Yu. Konobeyev, A.I. Dityuk, Cross-Section Data Library MENDL-2P to Study Activation and Transmutation of Materials Irradiated by Nucleons of Intermediate Energies, Proc. Int. Conf. Nuclear Data for Science and Technology, 19-24 May 1997, Trieste, Italy. Vol. 59, Part I, pp. 1054-1056.

- 6. Ignatyuk, Yu.N. Shubin, Nuclear Data Needs for Accelerator-Driven Subcritical Systems with Heavy Liquid Metal Coolant. Proc. Conf. on Heavy Liquid Metal Coolant in Nuclear Technology. 5-9 October 1998, p.29, Obninsk, Russia.
- E.V. Gai, A.V. Ignatyuk, V.P. Lunev Yu.N. Shubin. Radiological Aspects of Heavy Metal Liquid Targets for ADS as Intense Neutron Sources. In: Proc. Int. Conference Bologna-2000 "Structure of Nucleus at the Dawn of Century", Bologna, Italy, May 29 – June 3, 2000. *World Scientific*, in press.
- 8. M.I.Krivopustov et al. First Experiments on Transmutation Studies of I-129 and Np-237 Using Relativistic Protons of 3,7 GeV. JINR-Preprint E1-97-59, Dubna, 1997; Radioanalitical and Nuclear Chemistry, 1997, 222, p. 267.
- 9. R.Brandt, M.I.Krivopustov, A.N.Sosnin et al. Transmutation of Radioactive Waste with Help of Relativistic Heavy Ions. JINR-Preprint E1-97-349, Dubna, 1997; Kerntechnik, 1998, v. 64, p. 167.
- M.I.Krivopustov et al. Investigation of Temperature and Neutron Fields in Lead Medium During Interaction with Relativistic Protons. JINR - Preprint P1-99-117, Dubna, 1999, Submitted to Kerntechnik.

Nuclear data studies for ADS within ISTC Projects 609 (completed) and 1971 (new): Neutron-induced fission of ²³³U, ²³⁸U, ²³²Th, ²³⁹Pu, ²³⁷Np, ^{nat}Pb and ²⁰⁹Bi

relative to ²³⁵U in the energy range 1-200 MeV

O.A. Shcherbakov¹, A.Yu. Donets², A.V. Evdokimov², A.V. Fomichev²

T. Fukahori³, A. Hasegawa³, A.B. Laptev¹, V.M. Maslov⁴,

G.A. Petrov¹, S.M. Soloviev², Yu.V. Tuboltsev⁵, A.S. Vorobyev¹

Neutron-induced fission cross-sections of $^{240}\mathrm{Pu},\,^{243}\mathrm{Am}$ and W in the energy range 1-200 MeV

O.A. Shcherbakov¹, M.B. Chadwick⁶, A.Yu. Donets², A.V. Fomichev²,

R.C. Haight⁶, A.B. Laptev¹, Yu.V. Tuboltsev⁵, A.S. Vorobyev¹

¹ Petersburg Nuclear Physics Institute, 188350, Gatchina, Leningrad district, Russia

² V.G. Khlopin Radium Institute, 2-nd Murinski Ave. 28, 194021, St. Petersburg, Russia

³ Nuclear Data Center/JAERI, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195, Japan

⁴ Radiation Physics and Chemistry Institute, 220109, Minsk-Sosny, Belarus

⁵ A.F. Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, 194021, St. Petersburg, Russia

⁶ Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA

The purpose of this projects is to obtain neutron fission cross-sections of ²³³U, ²³⁸U, ²³²Th, ²³⁹Pu, ²³⁷Np, ^{nat}Pb and ²⁰⁹Bi in case of Project 609 and ²⁴⁰Pu, ²⁴³Am and W in case of Project 1971 relative to ²³⁵U by means of new measurements in the energy range from 1 MeV to 200 MeV. These isotopes have been chosen for present investigation according to the Nuclear Data Request List for new JENDL High Energy File (JENDL-3.3). The values of the cross-sections to be obtained are intended for use as nuclear data for accelerator-driven transmutation and energy production problem, as well as for the problem of secondary standard in intermediate energy region and some other applications. The Project 609 has been completed successfully and measured fission cross-sections have been published [1]. The Project 1971 is at the very beginning now.

The experimental part of the Projects includes: preparation of fissile targets, measurements, experimental data processing and production of the neutron induced fission cross-sections for isotopes mentioned above relative to ²³⁵U in the energy range 1-200 MeV. The measurements are carried out at the time-of-flight neutron spectrometer GNEIS [2] in Gatchina based on the 1-GeV proton synchrocyclotron of PNPI used as a white neutron source. The fission cross-section ratios are measured simultaneously for several isotopes using two multiplate fission ionization chambers. For actinide targets, the threshold cross-section method and evaluated data below 14 MeV are used for normalization of the shape measurement data. For Pb, Bi and W targets, an absolute normalization of the measured cross-section ratios is done using the thickness of the targets and detection efficiencies. The values of fission cross-section ratio are obtained with statistical accuracy 1-3 % and systematic one 3-10 % and then convert to absolute cross-sections using the evaluated and recommended fission cross-section of ²³⁵U.

At present, the world scientific community disposed only a few neutron sources suitable for the neutron fission cross-sections measurements at intermediate energies. Such measurements are very expensive and therefore have a high priority within the framework of international cooperation. Besides the scientists from institutions of CIS countries, the specialists from Japan Atomic Energy Research Institute were involved in the Project 609 and from Los Alamos National Laboratory will be involved in the Project 1971.

References:

- A.Yu. Donets, A.V. Evdokimov, A.V. Fomichev, T. Fukahori, A. Hasegawa, A.B. Laptev, V.M. Maslov, G.A. Petrov, O.A. Shcherbakov, S.M. Soloviev, Yu.V. Tuboltsev, A.S. Vorobyev, *Int. Conf. Nucl. Data for Sci. and Tech.*, Oct. 7-12, 2001, Tsukuba, Japan. Abstracts, p. 1.3-O-16.
- 2. N.K. Abrosimov, G.Z. Borukhovich, A.B. Laptev, V.V. Marchenkov, G.A. Petrov, O.A. Shcherbakov, Yu.V. Tuboltsev, V.I. Yurchenko, *Nucl. Instrum. Meth.* A242 (1985) 121.

ISTC Project #2002: Experimental and theoretical studies of the yields of residual product nuclei produced in thin Pb and Bi targets irradiated by 40-2600 MeV protons

Yury E. Titarenko, Vyacheslav F. Batyaev

Institute for Theoretical and Experimental Physics (ITEP), B.Cheremushkinskaya 25, 117259 Moscow, Russia

Yury.Titarenko@itep.ru; http://efimych.itep.ru

To be presented at

BASTRA Cluster Meeting of EC funded FP5 projects, CERN, Geneva, Switzerland, December 5, 2001

ISTC #2002: Objectives

Studying the physics of high-energy proton-matter interaction in the following three essential research lines:

 Experimental determination of the independent and cumulative yields (cross sections for production) of residual radioactive product nuclei in proton-irradiated ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ^{nat}Pb, and ²⁰⁹Bi within a minutely fractionated proton energy range, namely, at 0.04, 0.07, 0.10, 0.15, 0.25, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, and 2.6 GeV.

 Additional measurements: ¹⁹⁷Au (0.8GeV), ²³⁸U(1.0GeV) to be compared with GSI inverse kinematic data

- Simulation of the residual product yields by different codes (LAHET, CEM2k, INUCL, CASCADE, YIELDX etc.). Verification of the codes against the experimental data to be obtained under the Project, that is, we will estimate of the predictive power of the codes;
- Modifying the most widely used LAHET and CASCADE codes.

ISTC #2002: Motivation

Fundamentally novel parameters of the target assemblies must be known reliably for ADS conceptual and engineering designs:

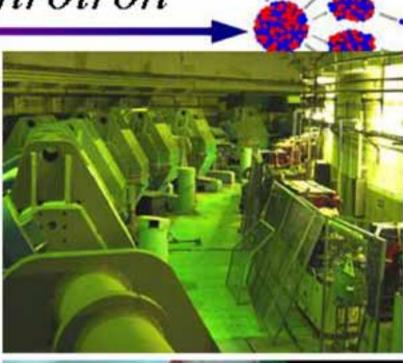
- Neutron yield and spectrum;
- Target neutronics;
- Energy deposition parameters of the target;
- Reaction product yields in the target. The yields define:
 - Activation of target and structure materials
 - Handling & maintenance
 - Alpha-activity (²¹⁰Po, ¹⁴⁸Cd, ...)
 - Long-lived nuclide accumulation
 - Radiation damage Mechanical strength, Life time, Thermal stress
 - p, d, t, ³He, ⁴He gas production
 - Neutronic "poisoning"
 - Chemically-active nuclide accumulation

International code comparison by NEA auspice in 1996 (NSC/DOC(97)-1) emphasized that calculation of activation yields turns out to be <u>an extremely difficult task</u>

Experimental and theoretical studies of the yields of residual product nuclei produced in thin Pb and Bi targets irradiated by 40-2600 MeV protons

Tanata	Proton energy [GeV]											
Targets	0.04	0.07	0.1	0.15	0.25	0.4	0.6	0.8	1.2	1.6	2.6	
208 Pb	x	x	x	x	x	x	x	x	X	x	x	
207Pb	x	x	X	x	x	x	x	X	X	x	X	
206 Pb	X	x	X	X	x	x	x	X	X	x	X	
natPb	x	X	X	X	x	x	x	x	X	x	X	
209 Bi	X	X	X	X	x	X	X	X	X	X	X	

Approximate isotopic composition of the targets

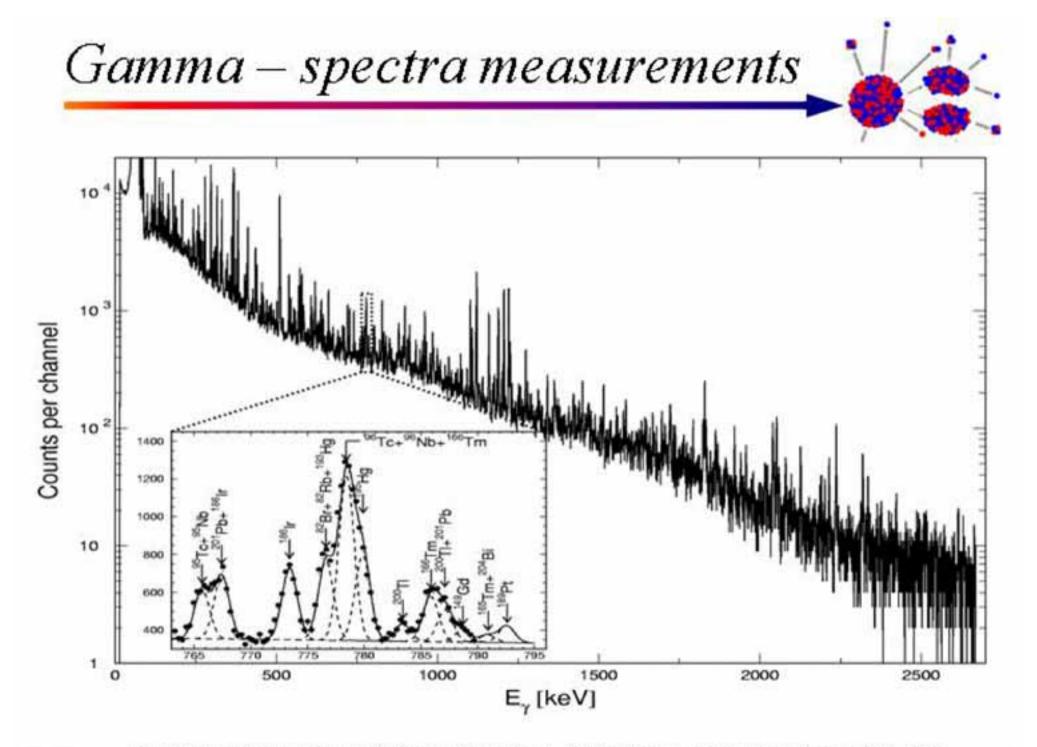

Targets											
	204 Pb	206 Pb	207 Pb	208 Pb	209 Bi						
²⁰⁸ Pb	<0.01	0.87	1.93	97.2	-						
²⁰⁷ Pb	<0.01	1.39	93.2	5.41	-						
206 Pb	0.19	92.3	5.1	2.41							
^{nat} Pb	1.4	24.1	22.1	52.4							
209 Bi	4	-	-	-	>99.9						

ITEP U-10 proton synchrotron

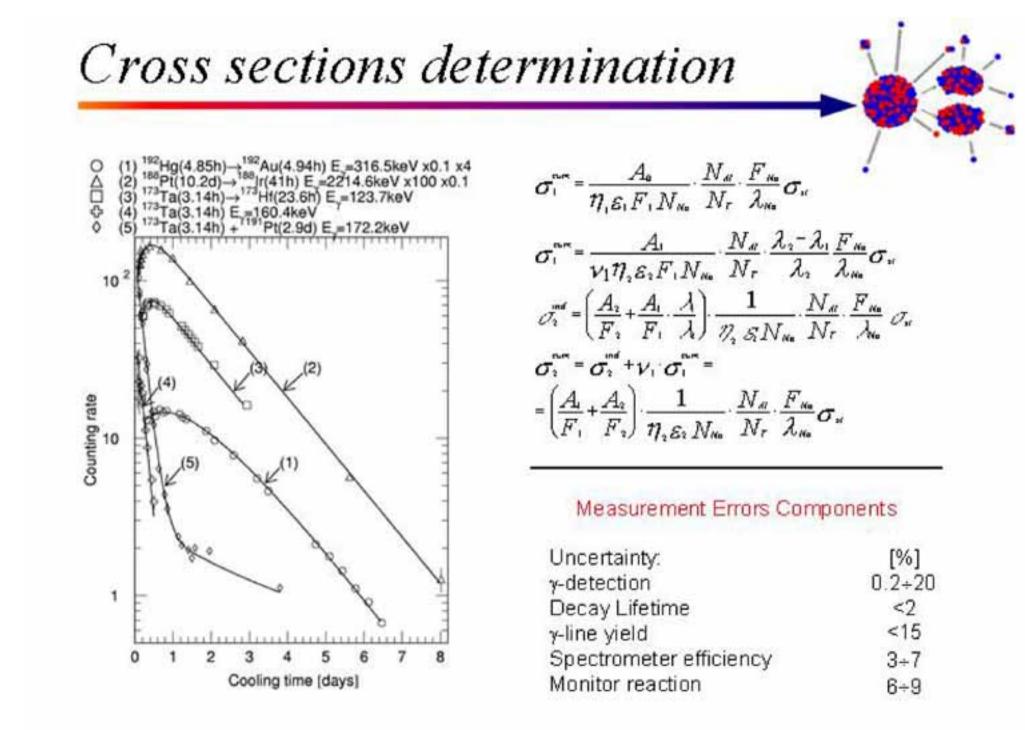
Two synchrotron extracted beams are used in irradiations:

- high-energy beam of protons with energies from 800 MeV to 2.6 GeV.
 - Section: an ellipsis with axes of about 25 mm and 15 mm;
 - Intensity: ~ 2.10¹¹ protons per pulse;
 - Extraction run duration: about 0.4 s.
- low-energy beam of protons with energies from 70 to 200 MeV.
 - Section: a circle with diameter of about 25 mm;
 - Intensity: ~ 5.10⁹ protons per pulse;
 - Extraction run duration: about 50 ns.

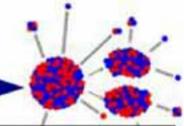
The pulse repetition rate is about 15 pulses per minute in both beams.


ITEP U-10 proton synchrotron: new bear

- Third multi-function extracted beam is being mounted:
 - Proton energy: 40-10000 MeV;
 - Beam section: a circle of ~ 20 mm diameter;
 - Intensity: ~1.10¹¹ protons per pulse;
 - Extraction runs: 1-4 50-ns bunches spaced 150 ns apart.



~5-10¹³ protons are required for irradiating each of 55 targets to measure 10min - 30 years lifetime nuclides. This will take ~ 300 hours of accelerator operation time.



14.12.200 BASTRA cluster meeting of EC funded FP5 projects, CERN, Geneva, Switzerland, December 5, 2001

Codes used in comparison

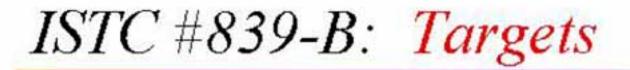
Code name	Author, Lab	Models used	Projectile Energy Range, GeV
CEM2k	S.G. Mashnik, JINR, Dubna. LANL	Dubna INC ¹ (exciton), Preequilibrium Modified Exciton Model, Evaporation (Weisskopf-Ewing), Competition between Fission (Bohr- Wheeler) and Evaporation	0.01-5
CASCADE	V.S. Barashenkov, JINR, Dubna	Dubna INC, Evaporation (Bohr-Wheeler), Fission (Dubna version of Fong model)	<1000
INUCL	N.V. Stepanov, ITEP, Moscow	ITEP INC, Preequibrium Exciton Model, Evaporation (Weisskopf-Ewing), Fission (Thermodinamical Model)	0.01-10
LAHET	R.E. Prad, LANL, NM	Bertini/ISABEL INC, Multustep Preequilibrium Exciton Model, Evaporation (weisskopf-Ewing, Dersner's code) or Fermi Breakup Model for light nuclei, Fission (RAL/ORNL models)	Bertini INC: <3.5 ISABEL: <1.0
YIELDX	R. Silberberg, C.H. Tsao	Semi-empirical formulae, fission allowed	>0.1

Codes that can be used by our collaborators:

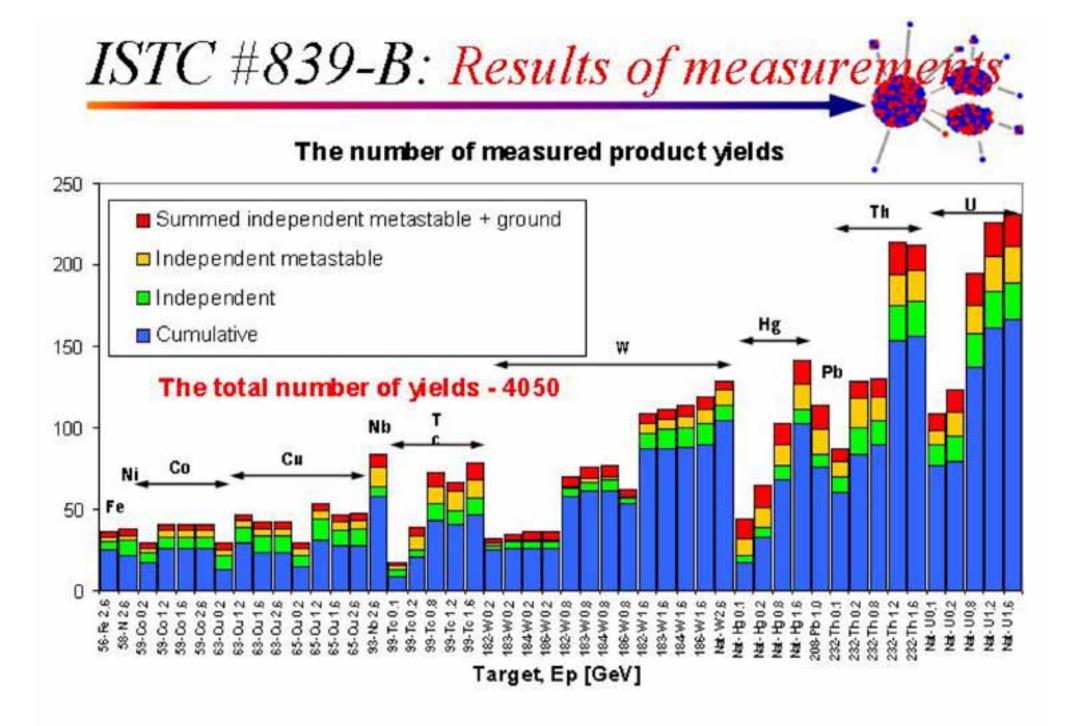
ALICE	M.Blann, LLINL, CA	Hybrid Monte Carlo Simulation Model, Evaporation (Weisskopf-Ewing, Fermi/Kataria level densities), Fission (Bohr-Wheeler)	<0.4
GNASH	MLB. Chadwick, P.G.Young, LANL, NM	FKK ² precompound Decay, Evaporation (Hauser-Fechbach), Fission (Bohr-Wheeler)	<0.2
NUCLEUS	T. Nishida et al., JAERI	Bertini INC, Evaporation (Weisskopf-Ewing), Fission (JAERI model)	<3.5
QMD	K.Niita et al., JAERI	Quantum-molecular dynamic model, Evaporation (Weisskopf-Ewing), Fission (Nakahara model)	<5.0

INC - Intranaclear cascade, 'FKK - Fenshbach-Kerman-Keenin

ISTC #839-B (199-XII'00): Scope of Work


Experimental and theoretical studies of the yields of residual product nuclei produced in thin Pb and Bi targets irradiated by 40-2600 MeV protons

Proton		Targets														
Energy [GeV]	⁵⁶ Fe	⁵⁸ Ni	59C o	⁶³ C u	⁶⁵ C u	^{so} Nb	³⁹ Tc	182 W	¹⁸³ ₩	¹⁸⁴ W	¹⁸⁶ W	™™	^{nat} Hg	²⁰⁸ Pb	²³² Th	natU
0.1							+						+:		+	+
0.2			+	+	+		+	+	÷	+	+		+		+	+
0.8							+	+	÷	+	+				+	+
1.0													· · · · ·	+		
1.2			+	+	+		+						+		+	+
1.6			+	+	+		+	+	+	+	+				+	+
2.6	+	+	+	+	+	+						+	+			
ADS element	SM, Sh, TM	SM	SM	SM	SM	SM	FP	тм	тм	тм	тм	тм	тм	тм	Th- cycle	Fuel


SM - Structure Material; Sh - Shielding Material; FP - Fission Product;

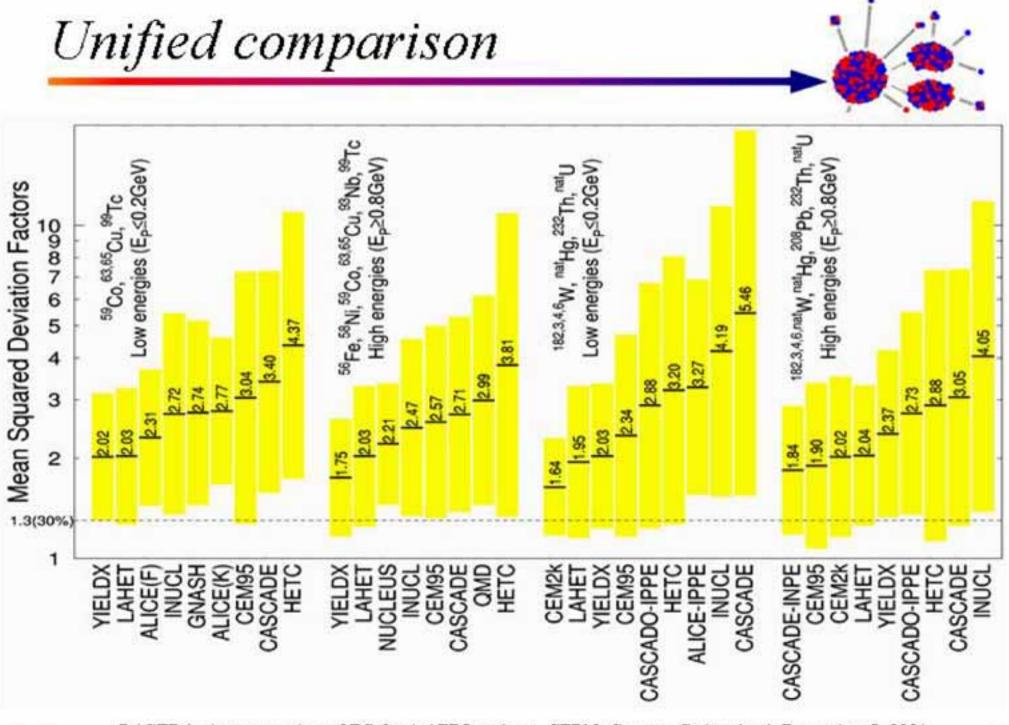
TM - Target material; Th - Th fuel cycle, breeding; Fuel - Fuel compositions

14.12.200 BASTRA cluster meeting of EC funded FP5 projects, CERN, Geneva, Switzerland, December 5, 2001 10

Target	Isotopic composition [%]								
	¹⁸⁰ W	¹⁸² W	¹⁸³ W	¹⁸⁴ W	186W				
¹⁸² W	⊲0.03	90.7	5.71	2.62	0.97				
¹⁸³ W	0.07	4.62	73.3	20.08	1.93				
¹⁸⁴ W	0.3	1.9	3.9	90.3	3.6				
196₩	⊲0.02	0.66	0.49	2.45	96.4				
^{nat} W	0.126	26.31	14.28	30.64	28.64				
²³² Th		100							
^{nat} U		²³³ U-0.0055; ²³⁵ U-0.72; ²³⁸ U-99.2745							
⁹⁹ Tc	100								
⁵⁹ Co	100								
⁶³ Cu	⁶³ Cu – 99.6; ⁶⁵ Cu - 0.4								
⁶⁵ Cu	⁶³ Cu - 1.3; ⁶⁵ Cu - 98.7								
^{nat} Hg	¹⁹⁶ Hg-0.14; ¹⁹⁸ Hg-10.02; ¹⁹⁹ Hg-16.84; ²⁰⁰ Hg-23.13; ²⁰¹ Hg-13.22; ²⁰² Hg-29.80; ²⁰⁴ Hg - 6.85.								
⁵⁶ Fe	⁵⁴ Fe-0.3; ⁵⁶ Fe-99.5; ⁵⁷ Fe-0.2; ⁵⁸ Fe-≺0.05.								
⁵⁸ Ni	⁵⁸ Ni - 99.8; ⁶⁰ Ni - 0.19; ⁶¹ Ni - <0.01; ⁶² Ni - 0.01; ⁶⁴ Ni - <0.01.								
⁹³ Nb			100						
²⁰⁸ Pb	Pb – 97.2; ²⁰⁷ Pb – 1.93; ²⁰⁶ Pb – 0.87; ²⁰⁴ Pb < 0.01.								

ITEP-JAERI data comparison

The experimental yields of ⁵³Cu, ⁵⁵Cu(p,x) reaction products at E_p = 1.2 Gev measured at ITEP and JAERI (sampled yields).

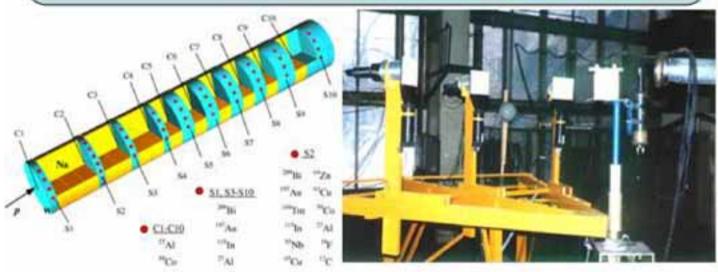

				*3 Cu		^{\$°} Cu				
Product T ₁₂	T ₁₂	Type	ITEP	JA	ERI	ITEP	JA	ERI		
	1021	1988 - C	GC2518	VHTRC	FNS	GC2518	VHTRC	FNS		
⁶⁵ Zn	24426d	i	1.73+-0.13		1.22	· · · · · · · · · · · · · · · · · · ·	2			
⁶³ Zn	38.47 m	i	1.32+-0.25			1.33+-0.21		-		
⁶² Zn	9.26h	1	0.219+-0.020	0.33+-0.08	1	0.481+-0.053	0.45+-0.14			
^{\$4} Cu	12.700h	1	61.4+-4.7		-	-				
^{¢1} Cu	3.333h	С	5.42+-0.62		1.22	14.9+-1.7	. ĩ			
⁶⁰ Cu	23.7m	C	1.08+-0.08	-		3.46+-0.25	4	-		
^{62m} Co	13.91m	i(m)	1.63+-0.11	-	14.1			14		
«'Co	1.650 h	C	6.52+-0.86	-		5.29+-1.92				
50 Co	5.2714y	(m.g)	16.8+-1.2		17.0+-1.9	9.27+-0.68		9.5+-1.1		
43/KE1000		/ ***	Warten and State		•					
34m CI	32.00 m	im)	0.329+-0.030		-	0.585+-0.050		-		
38S	170.3m	C	0.073+-0.008				-	-		
29 AI	6.56m	C	1.32+-0.14	-		1.13+-0.14		-		
28Mg	20.91h	C	0.251+-0.018	0.26+-0.05	-	0.195+-0.014	0.18+-0.05	-		
"Mg	9.462 m	C	0.452+-0.068			0.503+-0.074				
²⁴ Na	14.9590h	C	1.61+-0.13	1.98+-0.23	-	1.73+-0.12	1.68+-0.19			
22Na	2.6019y	C	1.12+-0.11		0.98+-0.14	1.39+-0.20		1.34+-0.24		
'Be	53 29 d	i	4.50+-0.42	5.0+-0.6	4.5+-0.6	5.47+-0.51	5.3+-0.7	5.7+-0.7		
Mean	deviation f	from ITE	EP data [%]	12	3		14	4		

14.12.200 BASTRA cluster meeting of EC funded FP5 projects, CERN, Geneva, Switzerland, December 5, 2001

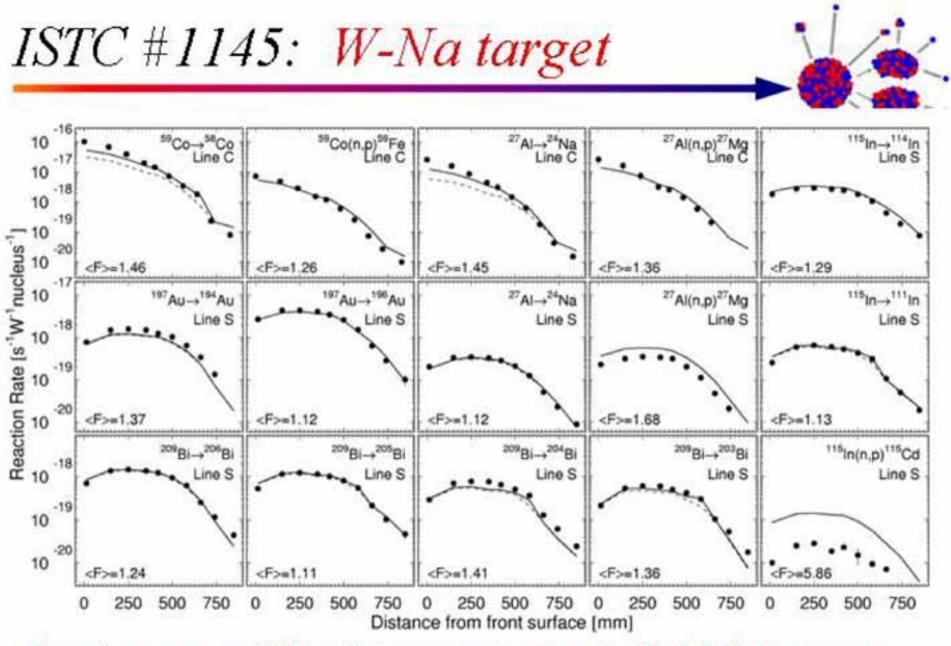
ITEP-GSI data comparison

ITEP measured residual nuclide yields in ²⁰⁸Pb irradiated with 1.0GeV protons together with GSI and ZSR data (sampled yields)

Product	T1/2	Туре	ITEP	GSI, Darmstadt	ZSR, Hannover
²⁰⁶ Bi	6.243d	i	4.60+-0.29		5.36+-0.67
²⁰⁵ Bi	15.31d	i	6.20+-0.40		7.09+-0.90
²⁰⁴ Bi	11.22h	(m1+m2+g)	5.29+-0.80		6.03+-0.95
²⁰³ Bi	11.76h	i _(m+g)	4.84+-0.59	2.	-
204mPb	67.2m	i(m)	11.0+-1.0	•	-
²⁰³ Pb	51.873h	C	31.5+-2.1	28.7+-3.1	-
201Pb	9.33h	C	26.9+-2.4	20.4+-1.9	
²⁰⁰ Pb	21.5h	C	18.2+-1.2	18.2+-2.0	27.8+-3.5
¹⁹⁸ Pb	2.4h	C	8.9+-2.1	14.0+-1.3	-
^{19/m} Pb	43m	C	17.9+-4.0		-
^{82m} Rb	6.472h	i(m)	2.73+-0.30	•	
⁸² Br	35.30h	i _(m+g)	2.17+-0.14	1.55+-0.24	2.62+-0.50
⁷⁵ Se	119.779d	C	1.33+-0.09	1.18+-0.19	1.61+-0.20
^{/4} As	17.77d	i	1.86+-0.18	1.66+-0.27	2.24+-0.28
⁵⁹ Fe	44.472d	C	0.91+-0.08	0.69+-0.11	1.05+-0.14
⁶⁵ Zn	244.26d	С	0.79+-0.19	0.42+-0.07	0.66+-0.17
⁴⁶ Sc	83.79d	i _(m+g)	0.35+-0.06	(1)	0.37+-0.05
Me	an deviation	from ITEP d	32	24	

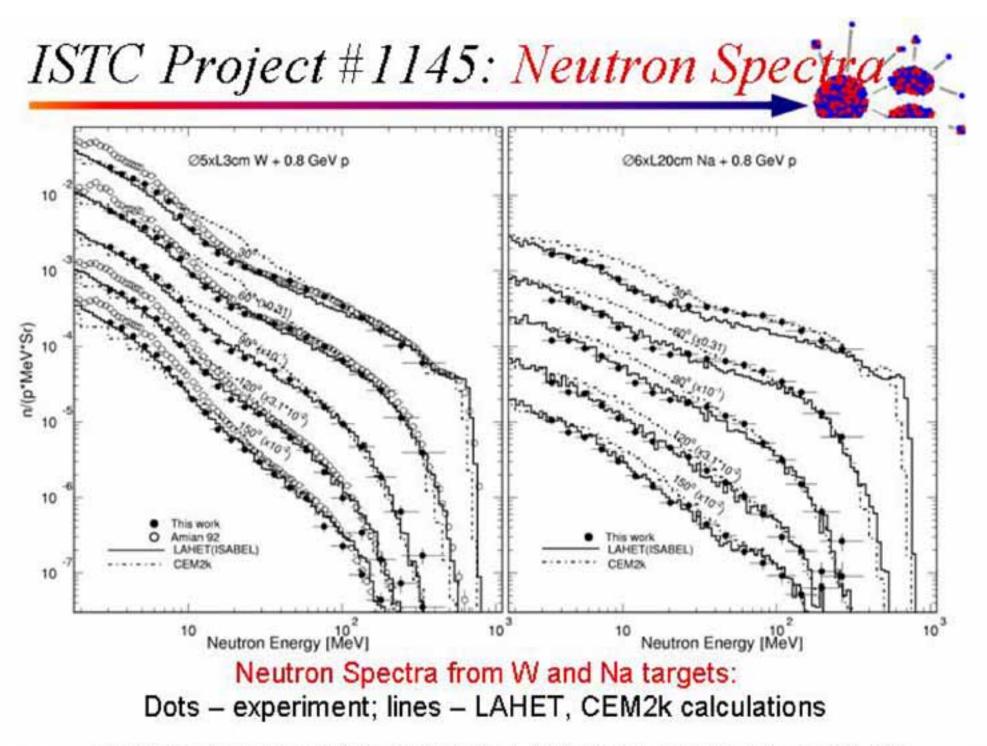


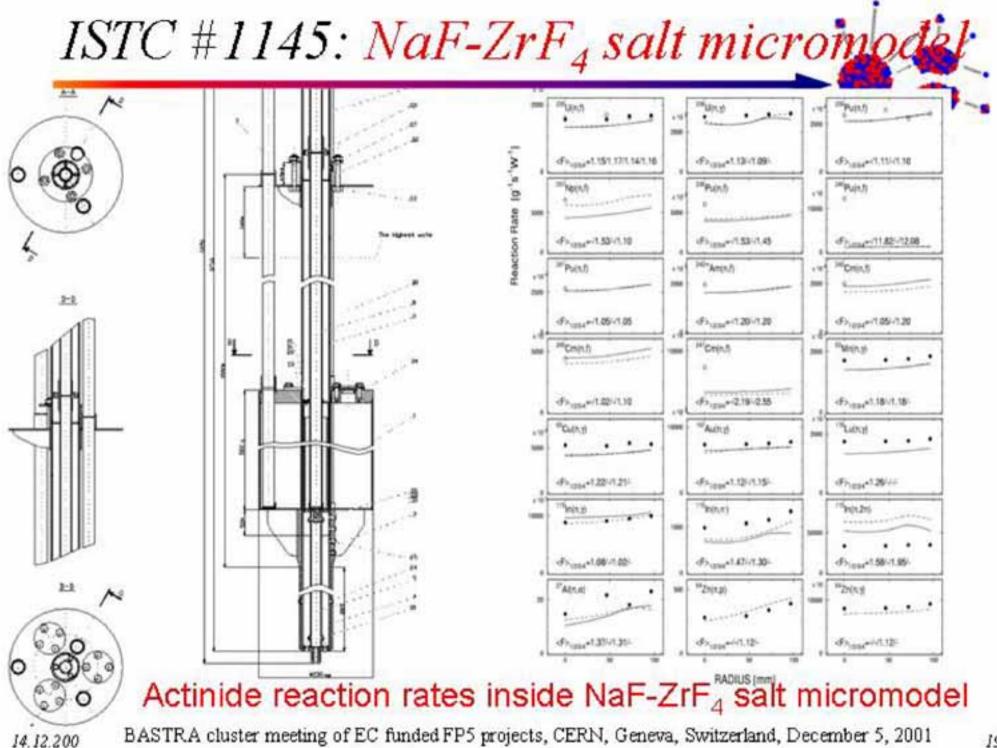
14.12.200 BASTRA cluster meeting of EC funded FP5 projects, CERN, Geneva, Switzerland, December 5, 2001 15


ISTC #1145 (III'99-VI'01): Scope of Work

- The various threshold reactions have been measured inside and outside a 0.8 GeV proton-irradiated thick W-Na target of Ø150xL900mm dimensions;
- The spectra of secondary neutrons from the 0.8 and 1.6 GeV proton-irradiated «thin» W (Ø50x30mm) and Na (Ø60xL200mm) targets have been measured;
- The fission cross sections have been estimated for seventeen isotopes (²³⁵U, ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴⁴Pu, ²⁴¹Am, ^{242m}Am, ²⁴³Am, ²⁴³Cm, ²⁴⁴Cm, ²⁴⁵Cm, ²⁴⁶Cm, ²⁴⁷Cm, ²⁴⁸Cm) in the NaF-ZrF₄ salt blanket micromodel.

All the results obtained have been simulated by the LAHET Code System and MCNP code with the use of the ENDF/B-VI, JENDL-3.2, MENDL2, MENDL2p nuclear data libraries.





Reaction rates on W-Na thick targets irradiated with 0.8 GeV protons: dots – experiment, lines – LCS+MENDL calculation

14.12.200 BASTRA cluster meeting of EC funded FP5 projects, CERN, Geneva, Switzerland, December 5, 2001 17

14.12.200 BASTRA cluster meeting of EC funded FP5 projects, CERN, Geneva, Switzerland, December 5, 2001

P.Pavlopoulos

BASTRA "connecting people" coherently !!!

Round Table Discussion on the needs of Nuclear Data studies for ADS and their coverage by FP5 and other projects.

BASTRA Objectives

- Determine Nuclear Data needs for ADS and Review the cross sections which are :
 - Already existing;
 - Being acquired within FWP5 & ISTC;
 - Planned.
- Quality assurance plan for the Nuclear Data to be implemented into an ADS Database:
 - Methods, standards, norms and success metrics
 BOTH for Experimental Data and Theoretical Models (data descriptions);
 - Identify data being critical to the industrial design;
 - Benchmark TRANSPORT codes and tools !

ADS Nuclear Data Requirements

ADS Nuclear Data Needs !

- List of (Z,A) isotopes for ADS with explicit motivation;
- Needed reaction mechanisms ;
- Energy domain ;
- Parameter space.

Input DATA for the ADS-Database !

- Status of experimental data:
 - Quality on resolution, continuous energy range, normalisation etc.
 - Completeness

Identify the REASONS for the existing DataBase discrepancies ; Why need of "vitamines" ?

- Universal criteria for the acceptance of Experimental Data in any compilation ; Can't depend from the "evaluator", since Experimental Data are to costly !
- More horizontal interactions between different theoretical activities, including the models and theoretical inputs used in TRANSPORT codes. Include the necessary pion and kaon production, include FLUKA as simulation code of reaction rates.

Quality assessment for Data and Computational Tools !

- Routines and Data used inside TRANSPORT codes;
- Simulation tools;
- Evaluators [?] Continuation of the Joint n_TOF, JEF & NEA Workshop series.
- SENSITIVITY Analysis !
- Exchange of Experimental Techniques !
 - i.e. Radiochemical analysis of the nTOF Pb target.

Next Steps

- Identify members and goals of the 3 WG.
 - Review ND objectives of 5th FWP & ISTC.
 - H. Aït Abderrahim, E.Gonzalez, J.-P.Meulders, P.Pavlopoulos, R.Soule, B. Carluec, L.Cinotti,
 - Sensitivity Studies.
 - C.Broeders, E.Gonzalez, Y.Kadi,
 - Simulation Tools and Theoretical Models.
 - A.Ferrari, H.Leeb, J.Cugnon, A.Koning, A.Nourri, P.Pavlopoulos, E. Gonzalez.....
- Investigate for resources necessary to operate the WGs
- Finance young scientists through MC fellowships & other means (?)