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The reaction mechanisms best suited for the production of neutron-
rich nuclei, fragmentation and �ssion, are discussed. Measurements
of the production cross sections of reaction residues together with
model calculations allow to conclude about the expected produc-
tion rates of neutron-rich isotopes in future facilities.

1 Introduction

The production of nuclei far from stability has provided a new ground to in-
vestigate the structure and the dynamics of nuclei. The present experimental
facilities are able to produce a large variety of neutron-de�cient isotopes, how-
ever, the neutron-rich side of the chart of the nuclides is only accessible up
to the drip lines for the lightest nuclei. Consequently, the challenge for most
of the future planned rare-beam facilities is the production of neutron-rich
isotopes.

Together with the technological improvements concerning high-current accel-
erators, large-acceptance separators and larger extraction and charge-breeding
eÆciencies, the optimal choice of the reaction mechanisms will play a major
role on the �nal production rates of neutron-rich nuclei. Di�erent reaction
mechanisms can be used to produce these nuclei, however, heavy-ion colli-
sions at low energies like fusion, deep inelastic or multinucleon transfer can
only be applied with thin targets limiting the �nal production rates. Better
suited seem to be fragmentation or spallation at high energies and �ssion. In
addition, these two reaction mechanisms allow to produce a large variety of
neutron-rich nuclei.

In this paper we discuss the main issues of these two reaction mechanisms.
The large collection of data obtained during the last years has brought new

10 March 2003



10
-3

10
-2

10
-1

1

10

191 192 193 194 195 196
10

-3

10
-2

10
-1

1

10

189 190 191 192 193 194 195

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

188 189 190 191 192 193 194 195
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

186 187 188 189 190 191 192 193

10
-6

10
-5

10
-4

10
-3

10
-2

184 185 186 187 188 189 190
10

-7

10
-6

10
-5

10
-4

10
-3

183 184 185 186 187 188 189

Ir Os

Re W

Ta Hf

Mass number

P
ro

du
ct

io
n 

cr
os

s 
se

ct
io

n 
(m

b)

Fig. 1. Production cross sections of neutron-rich nuclei in cold-fragmentation reac-
tions of 197Au at 1 A GeV in a beryllium target. The lines represent di�erent model
calculations with the code COFRA (see text). The squares mark those isotopes
which were observed for the �rst time in reference 6.

model descriptions of these reactions providing reliable predictions on the
expected production rates of neutron-rich isotopes in future planned rare-
beams facilities.

2 Production of heavy neutron-rich nuclei

Heavy exotic nuclei (Z>70) can be produced by means of fusion-evaporation
reactions or in fragmentation(spallation) of heavy nuclei. Both reaction mech-
anisms lead mainly to the production of neutron-de�cient residues. However,
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Fig. 2. Production cross sections of proton-removal channels in di�erent reactions
(dots) 2;3;4 compared with the predictions of the code COFRA (lines).

it has recently been shown that fragmentation reactions at relativistic energies
present large 
uctuations in the N/Z distribution of the �nal residues and in
its excitation-energy distribution. In particular, the proton-removal channels
have been investigated in cold-fragmentation reactions[1] where only protons
are abraded from the projectile, while the induced excitation energy is below
the particle-emission threshold. These reactions can lead to the production of
heavy neutron-rich nuclei beyond the present limit of the chart of the nuclides
as shown in Fig. 1.

Cold-fragmentation reactions can be described in terms of the abrasion-ablation
model as a two-step process. First, the interaction between projectile and tar-
get leads to a projectile-like residue with a given excitation energy which
statistically de-excitates by particle evaporation or �ssion. A new analytical
formulation of the abrasion-ablation model, the code COFRA, has been de-
veloped[1] in order to calculate the expected low production cross sections
of extremely neutron-rich nuclei which are not reachable with Monte Carlo
codes.

The results of these calculations are shown in Fig. 1. The di�erent lines cor-
respond to calculations with di�erent enhancement factors of the excitation
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Fig. 3. Estimated production of heavy neutron-rich residues in cold-fragmentation
reactions induced by 238U, 208Pb and 174W at 1 A GeV in a beryllium target on top
of a chart of the nuclides. The color scale indicates the production cross section.

energy induced in the collision due to particle-hole excitations (see reference[1]
for details). As can be seen, the production cross sections of very neutron-rich
nuclei can nicely be described with the new analytical formulation of the
abrasion-ablation model. In Fig. 2 we compare the predictions of the code
with the production cross sections of proton-removal channels populated in
di�erent reactions [1{3].

Since the COFRA code describes correctly all the measured proton-removal
channels in relativistic heavy-ion collisions, it was used to determine the ex-
pected production of heavy neutron-rich nuclei in future rare-beam facilities.
The results of these calculations are shown in Fig. 3. In this �gure we report
the expected production cross sections of heavy neutron-rich nuclei that can
be obtained in the fragmentation of 238U, 208Pb and 174W. According to these
calculations, large progress is expected in this region of the chart of the nu-
clides, where the r-process path may even be reached around the end point
N=126.

3 Production of medium-mass neutron-rich nuclei

3.1 Fission

Fission has largely been used to produced medium-mass neutron-rich nuclei
up to the present limits of the chart of the nuclides [4]. The isotopic dis-
tribution of residues produced in �ssion can be understood in terms of the
potential governing this process. The Coulomb term of the nuclear potential
is responsible for the neutron excess of the stable �ssile nuclei leading to �s-
sion residues with an even larger neutron excess with respect to the valley of
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Fig. 4. Residual nuclei produced after the �ssion of 238U at di�erent excitation en-

ergies.

beta stability. However, the asymmetry term preserves the same N/Z of the
�ssioning nucleus in the �ssion residues. Shell e�ects and temperature induce
a polarization e�ect which allow to produce even more neutron-rich residues.

In order to investigate the 
uctuations in N/Z and mass asymmetry induced
by the temperature of the �ssioning system we have performed several sim-
ulations with the �ssion code of Ref.[5]. In �gure 4 we represent on top of a
chart of the nuclides the distributions of residues after the �ssion of 238U at
di�erent excitation energies. As can be seen in the �gure, when increasing the
excitation energy, shell e�ects (double humped distribution) disappear, and
the 
uctuations in mass asymmetry and N/Z increase, populating a larger
variety of neutron-rich residues. However, at high excitation energies neutron
evaporation becomes more important, and the residue distribution moves to
the neutron-de�cient side. One can de�ne an optimum excitation energy of the
�ssioning system around 50 MeV to produce the largest variety of neutron-rich
nuclei.

Once we know the optimum conditions to produced neutron-rich nuclei in
�ssion reactions, the �nal production rates will be de�ned by the evolution of
the production cross sections. In Fig.5, we report the production cross sections
of several neutron-rich tin and nickel isotopes produced in the �ssion of 238U
projectiles on Be[4], Pd[6] and H2[7]. These data show a dramatic decrease of
the production cross section of around one order of magnitude per additional
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neutron. Consequently, one can not expect a spectacular expansion of the
chart of the nuclides in the region of medium-mass neutron-rich isotopes by
using �ssion reactions with the future rare-beam facilities.

Fig. 5. Production cross sections of tin and nickel isotopes produced in the �ssion
of 238U induced by di�erent projectiles

3.2 Two-step scenario: �ssion + cold fragmentation

Recently it has been proposed to use both �ssion and cold-fragmentation reac-
tions, in a two-step reaction scheme[8], in order to overcome the limitations of
�ssion to produce extremely neutron-rich nuclei in the medium-mass region.
However, nowadays it is diÆcult to make reliable predictions of the �nal pro-
duction rates using this idea. As shown in Fig. 6, present fragmentation codes
show clear discrepancies in the predicted production rates when neutron-rich
projectiles are used. In addition, the energy at which the fragmentation stage
takes place plays a major role as shown in Fig. 7. In this �gure we report
the measured production cross sections of di�erent tin isotopes in the reaction
129Xe on aluminum at 790 A MeV [10] and 50 A MeV [11]. According to these
data the higher energies enhance the production of neutron-rich residues.

Nevertheless, we used the cold-fragmentation code COFRA, which is one of
the more reliable codes to predict the production of fragmentation residues
from neutron-rich projectiles to estimate the production rates in a two-step
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Fig. 6. Predicted production cross sections of residues in the fragmentation of 132Sn
at 1 A GeV on a beryllium target with the codes EPAX10 (upper �gure) and
COFRA2 (lower �gure). The color scale represents the production cross section.
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Fig. 7. Measured production cross sections of tin isotopes in the reaction 129Xe on
aluminum at 790 A MeV (squares)11 and 50 A MeV (dots)12.

reaction scheme at energies above 100 A MeV. In these calculations, the pri-
mary production cross sections in the �ssion step were taken from measured
data in the reactions 238U(1 A GeV)+p [7] and 238U(750 A MeV)+Be [4].
The most representative results of these calculations are shown in �gure 8.
In this �gure we represent the production of di�erent neutron-rich isotopes
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along the neutron shells N=50 and N=82. The thick line represents the direct
production in the �ssion of 238U induced by 1 GeV protons, while the thin
lines correspond to the two-step production after the cold fragmentation in
a Be target of di�erent Ga and Sn isotopes produced by �ssion. As can be
observed in both pictures, the two-step scheme is competitive with the direct
production only for the largest neutron excess.
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Fig. 8. Production of neutron-rich isotopes along the neutron shells N=50 and N=82
after the �ssion of 238U induced by 1 GeV protons (thick lines), and after the cold
fragmentation in a beryllim target of di�erent neutron-rich gallium and tin isotopes
produced in by �ssion (thin lines).

However, if one considers extraction, ionization and re-acceleration eÆciencies,
the situation could change. In this realistic scenario the two-step scheme could
be used to produce by �ssion an abundant long-lived neutron-rich nuclei like
132Sn and fragmenting it to produce those neutron-rich isotopes that have low
extraction eÆciencies.

4 Conclusion

In this paper we have reviewed the two reaction mechanisms best suited to
extend the present limits of the chart of the nuclides in the neutron-rich
side. Recent experiments have shown that the cold-fragmentation process con-
stitutes the appropriate tool to produce heavy neutron-rich residues. In the
intermediate-mass region it is well established that �ssion allows to produce
abundantly moderately neutron-rich isotopes. However, it will be diÆcult to
enlarge the present limits of the chart of the nuclides using this reaction mech-
anism. An alternative would be to use a two-step scenario where the cold frag-
mentation of neutron-rich isotopes produced by �ssion is foreseen. Although
this new scenario is only competitive with �ssion for isotopes with a large neu-
tron excess, it would be an optimum solution to produce neutron-rich isotopes
with low extraction eÆciencies.
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