Research on fission at GSI with applications to nuclear technology and astrophysics

Karl-Heinz Schmidt, GSI Darmstadt

Previous experimental knowledge

Fission channels

- variation with E*
- variation with A and Z of the fissioning system

- variation with E*
- variation with $Z^2/A^{1/3}$

Neutron yields, Kinetic energy,

. . .

Fission of target nuclei

Fission of projectile nuclei

- 1. Better means for detection by the high velocity of the products!
- 2. Short-lived nuclei accessible!

Experimental progress (overview on the different approaches)

Methods for the detection of fission fragments

- discovery of fission (1939) ► chemical identification in Z
- kinetic energy of the fragments ► *ionisation chamber*
- cumulative yields (after ß decay) ► gamma spectroscopy
- $\approx A_1$ and $A_2 \triangleright$ double E, double ToF
- elements $Z \triangleright X$ rays
- A and Z of the light fragments ► Spectrographe (Lohengrin) + energy loss (limited to target material with long half-lives and thermal neutrons)
- A and Z ▶ in-flight identification *in inverse kinematics*
- Z₁ and Z₂ ▶ in-flight identification *in inverse kinematics*
- A and Z ► high-resolution mass measurement (*traps*), normalisation?

Choice of the fissionning system

- Primordial nuclides (²³⁸U, ²³⁵U, ²³²Th) ► *target*
- Fission reactors (neutron capture ß) ► *target* (long-lived nuclides)
- Nuclear explosions (neutrons capture ß) ► *target* (long-lived nuclides)
- Products of direct reactions ► *target* (long-lived nuclides)
- Projectile fragmentation (A < 238) ► beam (half-life > 100 ns)

Excitation mechanisms:

- neutrons (thermal, fast, mono energetic)
- electrons
- photons (bremsstrahlung, mono energetic)
- protons and other charged particles (fusion, direct reactions)
- spontaneous fission
- electromagnetic and nuclear interaction *in inverse kinematics*
 - nuclear target (GSI) -> distribution in E^* (≈ RGD in e.m. and E^* ↑ in nucl.)
 - \circ electron collider ions (FAIR) -> well-defined E*

The installations of GSI actually used for fission studies

1. Z identification of <u>both</u> fission fragments (Applicable to short-lived radioactive fissile systems)

Double ionisation chamber – time-of-flight wall

The detectors

Identification of both fragments in Z

Z distributions

Fission after excitation of the giant dipole resonance. ($t_{1/2}$ of ²²⁶Th = 31 minutes !)

Appearance of an even-odd effect for odd-Z fissioning nuclei

Statistical explication by the phase space available for one individual proton in the two fragments at scission ($g \sim A$).

Bimodal fission of the neutron-deficient actinides

Z distributions after excitation of the GDR (E* ≈ 11 MeV) (K.-H. Schmidt et al., NPA 665 (2000) 221)

General view on the experimental results on fission of light actinides by use of secondary beams of radioactive nuclides.

Stability of the position of the heavy group at *Z* = 54

Surprising, since neutron shells are believed to be decisive.

Evolution of the fission Z distribution as a function of A and *E**

red: PROFI calculations, black: experimental data (K.-H. Schmidt et al., NPA 665 (2000) 221)

Ingredients of the fission model: Level densities, assumptions on dynamic, adjusted potential. Macroscopic potential: property of the compound nucleus, favours symmetric fission. Shells: properties of the fragments (2-center shell model), favour fission channels; disappear with *E**. **Nuclide distribution: superposition of fission from different nuclei at different** *E****.**

Variation of potential at outer saddle

Transition from single-humped to double-humped distributions investigated experimentally (K.-H. Schmidt et al., NPA 665 (2000) 221) and explained by macroscopic (CN) and microscopic (nascent fragments) properties of the potential-energy landscape near saddle Essential ingredient: Vanishing of shell effects with increasing excitation energy.

(J. Benlliure et al., Nucl. Phys. A 628 (1998) 458).

2. Full identification of <u>one</u> fission fragments in Z and A

The fragment separator as a magnetic spectrometer

²³⁸U (1A GeV) + ¹H

Basic equations: $B\rho = m_0 \mathbf{A} c \beta \gamma / (e \mathbf{Z})$ et $\Delta E \propto \mathbf{Z}^2 / \sqrt{2}$

Kinematical signature of fission

The Coulomb repulsion of the fission fragments causes a double-humped profile in the measured velocity distribution.

Experimental progress by inverse-kinematics method

Example: <u>Fission</u> of lead induced by ≈ 500 MeV protons

protons (553 MeV) on lead

²⁰⁸Pb (500 A MeV) on hydrogen

Some systems investigated (7732 data points)

List of systems investigated

⁵⁶ Fe (0.3 to 1.5 <i>A</i> GeV) + ¹ H	C. Villagrasa, PhD thesis P. Napolitani et al., PRC 70 (2004) 054607
¹³⁶ Xe(0.2 to 1 A GeV) + ^{1,2} H	P. Napolitani, PhD thesis L. Giot, in preparation M. Fernandez, in preparation
¹⁹⁷ Au (0.8 <i>A</i> GeV) + ¹ H	F. Rejmund et al., NPA 683 (2001) 540 J. Benlliure et al., NPA 683 (2001) 513
²⁰⁸ Pb (1 <i>A</i> GeV) + ^{1,2} H	T. Enqvist et al., NPA 686 (2001) 481 T. Enqvist et al., NPA 703 (2002) 435 A. Kelić et al., PRC 70 (2004) 064608
²⁰⁸ Pb (0.5 A GeV) + ¹ H	B. Fernandez et al., NPA 747 (2005) 227 L. Audouin et al., arXiv-nucl-ex/0503021
²³⁸ U (1 A GeV) + ^{1,2} H	M. V. Ricciardi et al., arXiv-nucl-ex/0508027 M. Bernas et al., NPA 725 (2003) 213 M. Bernas et al., submitted J. Taieb et al., NPA 724 (2003) 413 J. Pereira, PhD thesis E. Casarejos, PhD thesis P. Armbruster et al., PRL 93 (2004) 212701
²³⁸ U (1 A GeV) + Pb	T. Enqvist et al., NPA 658 (1999) 47

Comparison of two systems

Fission of ²³⁸U induced in a hydrogen and a lead target: Very different nuclide distributions.

Reproduction of ²³⁸U (1 A GeV) + ¹H

Systematics of model calculations

Residues of ²⁰⁸Pb+x and ²³⁸U+x at 1 A GeV

Very different isotopic distributions for different projectile-target combinations!

Experimental data are well reproduced.

Even-odd effect of very light fragments

N = Z

N = Z + 2

N = Z + 4

 $\begin{array}{l} \mathsf{N} = \mathsf{Z}{+}1\\ \mathsf{N} = \mathsf{Z}{+}3 \end{array}$

N = Z + 5

Observation in high-energy reactions (*systematically studied at GSI*) linked to the phase transition liquid – super fluid in the evaporation process.

Even-odd effect in the production of light fragments in ²³⁸U (1 *A* GeV) + Ti.

(Complex features!)

Reproduction of the maincharacteristics by statistical model.Importance of γ competition!

M. V. Ricciardi et al., Nucl. Phys. 733 (2004) 299

Applications

Nuclear data for spallation neutron sources (in particular ADS),

Astrophysics (reactions of cosmic rays in the interstellar medium), Nuclear safety (shielding and radioactive inventory), Medicine (cancer therapy with heavy-ion irradiation)

 \rightarrow Need for good knowledge on nuclear reactions up to $E/A \approx 1$ GeV including heavy residues.

Role of fission in the r process

Fission terminates the r process -> Fission barrier heights Fission produces nuclei in the fission-fragment region -> Nuclide distributions

Fission-barrier heights

Models reproduce well the measured barriers. Large discrepancies for r-process nuclei!

A. Kelic and K.-H. Schmidt, Phys. Lett. B

The topographic theorem

B. Myers and W. Swiatecki (Nucl. Phys. A 601 (1996) 141):

Energy of highest saddle close to energy at liquid-drop barrier

or

shell effects at the barrier are small.

Analysis of B_{exp} – B_{mac}

Phys. Lett. B

Large-acceptance spectrometer (in preparation)

SPALADIN @ GSI

Detection of neutrons, charged particles / but limited mass resolution

The FAIR project

Beams with higher energy and higher intensity Spectrometers with larger acceptance / higher resolution Storage rings, electron — ion collider

Electron-ion collider – the ideal tool ?

Determination of the excitation energy by inelastic electron electron scattering.

No angular straggling in target. No contribution from nuclear reactions.

Needs of a spectrometer with large acceptance for the fission fragments.

Conclusion

- The HI-accelerator and spectrometer complex of GSI Darmstadt is unique world-wide
- Break-through in measuring full nuclide distributions in spallation reactions in a French-Spanish-German collaboration
- Comprehensive data tables established (→ www-w2k.gsi.de/charms)
- New insight into global features of spallation and fission
- Model for nuclide production in fission on the basis of E_{pot} and ρ
- Successful modelling of all aspects of spallation-fission reactions
- Powerful method for testing predictive power of fission-barrier models
- Even better experimental conditions in the future FAIR facility

The CHARMS collaboration

Peter Armbruster, Antoine Bacquias, Lydie Giot, Vladimir Henzl, Daniela Henzlova, Aleksandra Kelić, Strahinja Lukić, Pavel Nadtochy, Radek Pleskač, Maria Valentina Ricciardi, Karl-Heinz Schmidt, Florence Vivès, Bernd Voss, Orlin Yordanov *GSI, Planckstr. 1, D-64291 Darmstadt, Germany*

Laurent Audouin, Charles-Olivier Bacri, Monique Bernas, Brahim Mustapha, Claude Stéphan, Laurent Tassan-Got *IPN Orsay, B.P. n. 1, F-91406 Orsay, France*

Alain Boudard, Jean-Erique Ducret, Beatriz Fernandez, Sylvie Leray, Claude Volant, Carmen Villagrasa, Wojczek Wlaslo **DAPNIA/SPhN, CEA Saclay, F-91191 Gif sur Yvette Cedex, France**

Julien Taieb DEN/DM2S/SERMA/LENR, CEA Saclay, F-91191 Gif sur Yvette Cedex, France

Christelle Schmitt *IPNL, Université Lyon, Groupe Matiere Nucleaire, 4, rue Enrico Fermi, F-69622 Villeurbanne Cedex, France*

Serge Czajkowski, Beatriz Jurado, Michael Pravikoff CENBG, Le Haut Vigneau, F-33175 Bordeaux-Gradignan, Cedex, France

Paolo Napolitani, Fanny Rejmund GANIL, B.P. 5027, F-14076 Caen Cedex 5, France

Jose Benlliure, Jorge Pereira, Enrique Casarejos, Manuel Fernandez, Teresa Kurtukian Univ. Santiago de Compostela, E-15706 Santiago de Compostela, Spain

Arnd Junghans *Forschungszentrum Rossendorf, Postfach 510119, D-01314 Dresden, Germany*