Basic Research at GSI for the Transmutation of Nuclear Waste^{*}

Aleksandra Kelić

GSI Darmstadt, Germany

* Work performed in the frame of the HINDAS project

Fragment separator:

Resolution and acceptance

Experimental results – general view:

Velocity distributions.

Nuclide distributions.

Experimental results – specific:

Dissipation in fission – statistical vs. dynamical

Thermal instabilities in nuclei – how hot can nucleus be

Even-odd structure in the final residue yields – restoring the nuclear structure effects at the end of the evaporation chain

Outlook.

Motivation - Hybrid System (ADS)

□ Yields of spallation neutrons.

- Production of radioactive nuclei by spallation.
- Material damages due to irradiation.

Nuclear reactions up to 1 GeV have to be known!

Nuclear physics at GSI for ADS design

How-to:

The data on systematic investigation of a few representative systems (Fe, Xe, Au, Pb, U) put important constraints on the models to be improved or developed.

⇒ Inverse kinematics

In-flight identifications of heavy reaction products.

Advantage:

- □ all half-lives above 150 ns
- □ all isotopes
- □ kinematical properties

Nuclear physics at GSI for ADS design

<u>Goal:</u>

Complete understanding and modelling of spallation reactions at 0.2 - 2 A GeV.

Energy deposition in spallation.
 Decay of hot nucleus.

Experimental facility at GSI

GSI

The GSI Fragment Separator

Length = 72 m $(B\rho)_{max} = 18 \text{ Tm}$ (O^{max} = 15 mrad $\Delta p/p = \pm 1.5 \%$

Resolution:

- $-\Delta(B\rho)/B\rho \approx 5 \cdot 10^{-4}$
- Δ (TOF) \approx 100 ps
- From TOF $\Rightarrow \Delta(\beta\gamma)/\beta\gamma = 2.5 \cdot 10^{-3}$

After A and Z identification $\Delta(\beta\gamma)/\beta\gamma$ is given only by $\Delta(B\rho)/B\rho$.

From $B\rho \Rightarrow \Delta(\beta\gamma)/\beta\gamma \approx 5 \cdot 10^{-4}$

Liquid ¹H and ²H targets

Identification pattern

Charge identification

From energy loss in MUSIC

Z / Δ **Z** \approx **200** for heaviest products

²³⁸U+Ti at 1 *A* GeV M.V. Ricciardi, PhD thesis

<u>Mass identification</u>

From $B\rho$ and $\beta\gamma$

A / $\Delta A \approx 400$

Kinematics

²³⁸U + ²⁰⁸Pb, 1 A GeV

✓ Production mechanism – fission / fragmentation

T. Enqvist et al, NPA658 (1999), 47.

Production cross sections

J. Taïeb et al., NPA 724 (2003) 413
M. Bernas et al., NPA 725 (2003) 213
M.V. Ricciardi, PhD thesis

Data accuracy:

□ Statistic – about 3%

□ Systematic – 9 - 15 %

Studied systems:

Projectile	Target	Energy [A GeV]
⁵⁶ Fe	¹ H	0.2 - 1.5
^{136,124} Xe	^{1,2} H, Ti, Pb	0.2, 0.5, 1
¹⁹⁷ Au	¹ H	0.8
²⁰⁸ Pb	^{1,2} H, Ti	0.5, 1
²³⁸ U	^{1,2} H, Ti, Pb	1

GSI code ABRABLA

Experiment

□ ABRABLA calculations

T. Enqvist et al., NPA686 (01)481

Role of dissipation in fission

Low excitation energies:

- Statistical time scale much longer than the dynamical \Rightarrow

could "justify" the use of the Bohr-Wheeler transition-state model.

□ High excitation energies:

- Dynamical time scale comparable to the statistical \Rightarrow

fission has to be treated as a dynamical process.

Proper description of fission is important for the evaporation – fission competition in spallation reactions.

Role of dissipation in fission

²³⁸U + p at 1 A GeV; Experiment vs. ABRABLA calculations

Thermal instabilities

ALADIN - 4π experiments, only light products

FRS - Thermometry extended to heavy products (K.-H. Schmidt et al, NPA 710 (02) 157)

 ✓ Unique picture ⇒ maximum temperature of ~ 5 MeV above which compound system can not survive as an entity.

Thermal instabilities

P. Napolitani, PhD thesis, PRC accepted

 ✓ Have to be considered in order to describe the production of light residues, especially in p-induced reactions on lower-mass targets.

Even-odd staggering in the final residue yields

Even A: even Z favoured
Odd A, p rich: even Z favoured
Odd A, n rich: odd Z favoured (20%)

□ *N*=*Z*: huge staggering >50%!

Number of excited levels of the mother that could decay into the daughter determines the probability of a channel (M.V. Ricciardi et al, NPA 733 (04) 299).

 \checkmark Restoring of the nuclear structure in the very last steps of the evaporation.

- Energy dependence of proton-induced spallation of ¹³⁶Xe (0.2 ... 1 A GeV) at FRS. (Data partly analysed, further analysis in progress). Modelling of spallation in a thick target.
- Coincidence measurement of heavy residues, light charged particles and neutrons with ⁵⁶Fe at ALADIN. (Experiment in preparation). ⇒ **Investigation of the decay of highly excited heavy nuclei.**
- Full identification of both fission fragments, simultaneous measurement of neutrons, light charged particles and gammas with new R3B magnetic spectrometer (Preparative studies). Aiming for a kinematically complete fission experiment.

Experimental goal:

Full coverage of <u>yields and velocities of heavy residues</u>, neutrons and light charged particles.

□ <u>Status:</u>

- Most complete set of relevant data measured
 - (~ 1000 isotopes /system, previously: ~ 20).
- 2nd generation experiment in preparation.

New information on critical topics:

- Dissipative hindrance of fission (B. Jurado et al, PRL 93 (2004) 072501).
- Thermal instabilities in nuclei (K.-H. Schmidt et al, NPA 710 (2002) 157).
- Even-odd staggering in residue yields (M.V. Ricciardi et al, NPA 733 (2004) 299).

http://www-w2k.gsi.de/kschmidt

Collaborations

<u>GSI</u>

P. Armbruster, T. Enqvist, K. Helariutta, V. Henzl, D. Henzlova,
B. Jurado, A. Kelić, M. V. Ricciardi, K.-H. Schmidt, C. Schmitt,
F. Vives, O. Yordanov

IPN-Paris

L. Audouin, M. Bernas, B. Mustapha, P. Napolitani, F. Rejmund,

C. Stéphan, J. Taïeb, L. Tassan-Got

CEA-Saclay

A. Boudard, L. Donadille, B. Fernandez, R. Legran, S. Leray,

C. Villagrasa, C. Volant, W. Wlazło

University Santiago de Compostela

J. Benlliure, E. Casarejos, J. Pereira

CENBG-Bordeaux

S. Czajkowski, M. Pravikoff

