# Status of the RESPA project

# **REsidue production in SPAllation reactions** relevant for the incineration of nuclear waste

# **Spallation studies**





### Energy dependence of the spallation process

- Energy loss of the proton beam in the spallation source
- Secondary reactions
- Projects to demonstrate the components of an ADS

#### MUSE -> MEGAPIE -> MYRRHA -> XT-ADS European ADS Demo

- MUSE: Zero power sub-critical core coupled with a D accelerator. Objectives: Reactor Physics understanding (2003)

- MEGAPIE: 1 MW Liq. Pb-Bi target to be installed in PSI, 590 MeV proton. Objectives: master the Pb-Bi technology for spallation source (2006)

- MYRRHA: A multipurpose ADS, 350 MeV proton, Pb-Bi spallation target and subcritical core. Objectives: concept design (2004), detailed design (2008), ready (2014-2016)

#### - European Transmuter demonstrator XADS:

30 to 80 MW proton beam, sub-critical core of several 100 MW. Objectives: waste transmutation demonstration at semi industrial level **(2020 ?)** 

## Energy dependence of the spallation process



| <sup>136</sup> Xe+p at   | 1 A GeV   | Paolo's Thesis     |
|--------------------------|-----------|--------------------|
| <sup>136</sup> Xe+p,d at | 500 A MeV | Lydie, in progress |
| <sup>136</sup> Xe+p at   | 200 A MeV | Orsay, in progress |

### Experimental setup @ FRS



When the charge and the mass are identified (A, Z integers) the velocity is calculated from  $B\rho =>$  precised determination !

$$\beta \gamma = \frac{e}{c \cdot u} \cdot \frac{A}{Z} \cdot B \rho$$

$$\underline{\beta \cdot \gamma / \Delta \beta \cdot \gamma} = B \rho / \Delta B \rho \approx 2000$$

## Liquid <sup>1</sup>H and <sup>2</sup>H targets





CEA/DSM/DAPNIA/STCM Ph. Chesny et al., GSI scientific report 1996

### Analysis Status



136Xe + d 500 A MeV

**Fragments identification in progress** 

136Xe + dummy 500 A MeV Second measurement

**Fragments identification in progress** 

#### Identification pattern

<sup>136</sup>Xe + p 500 A MeV



#### **Dispersion at S2 method 1**









### **Dispersion at S2 method 2**

Average  $\Delta E$  in MUSIC 1 vs position at S2



For  $B\rho_0 = X_2 = 0$ 

For each nuclei,  $X_2$  is known but B<sub>p</sub> needs to be calculated (AMADEUS)





### **Charge states**

#### Same problems for all the settings with $B\rho > B\rho$ of the beam ...

Average  $\Delta E$  in MUSIC 1 vs position at S4



#### **Charge states**

#### Same problems for all the settings with $B\rho > B\rho$ of the beam ...



Solution: contours on the blob, look position at S2 and check with Lieschen

### **Charge states**

run 493 <sup>122.2</sup>Cd

XS2\_XS4CHARGE(4)



#### Setting close to the beam



## Velocity distributions: <sup>136</sup>Xe + p 500 A MeV



#### In progress

#### <sup>136</sup>Xe + p 500 A MeV

- Charge states
- Transmission correction for velocity distributions
- Look carefully all velocity spectra shift to solve ...

#### <sup>136</sup>Xe + d 500 A MeV

- Pressure corrections
- Z calibration
- Charge states

To do

<sup>136</sup>Xe + p 500 A MeV

- Cross sections

<sup>136</sup>Xe + p 500 A MeV

- Velocity distributions
- Cross sections