Nuclear structure

Why ?

To identify the different phenomena at the origin of the nuclear properties To develop models able to describe these phenomena

Test the models at their limits

High spin nuclei: to explore the nuclei at the limits of the angular momentum.

Heavy and super heavy nuclei: to explore the nuclei at the limits in charge.

Exotic nuclei: to explore the nuclei at the limits in isospin.

How ?

Development of exotic beams since 25 years

+ Development of new experimental devices

comparison of mass model predictions

http://www-csnsm.in2p3.fr/

comparison of mass model predictions

Binding energies of ground states and of the first excited states

S. Pieper et al., Phys. Rev. C64, (2001), 014001

a lot of experiments since the 60's try to probe or not the existence of a tetraneutron .

" I show that it does not seem possible to change modern nuclear Hamiltonians to bind tetraneutron without destroying many other successful predictions of those Hamiltonians.

This means that, should a recent experimental claim of a bound tetraneutron be confirmed, our understanding of nuclear forces will have to be significantly changed. "

S. C. Pieper, PRL 90, 252501, June 2003

"Extract" neutron clusters

$$|^{14}Be\rangle \equiv a |^{10}Be + {}^{4}n\rangle + \cdots$$

- ▷ effective + clean + sensitive !!!
- ▷ technique similar to Chadwick's (1932) !
- \triangleright saturation (sensitive to low E_p) ...

The ¹⁴Be break-up experiment

 $^{14}\text{Be} \rightarrow ^{12}\text{Be} + n$

4n = The quest of the holy Graal for physicists ³ 40 N

in structure !

FIG. 2: Distribution of the ratio of proton energy, $E_{\rm p}$ (MeV), to the energy derived from the flight time, E_n (MeV/N), for data from the reaction C(¹⁴Be,¹²Be+n) (histogram) and for simulations of elastic scattering of ^{1,3,4}n (solid, dashed and dotted lines, respectively) on protons. The experimental resolution has been included in the simulations.

FIG. 5: Scatter plot and the projections onto both axes of the particle identification parameter PID defined in Eq. (1) vs $E_{\rm p}/E_{\rm n}$ for the data from the reaction C(¹⁴Be,X+n). The PID projection is displayed for all neutron energies. The dotted lines correspond to $E_p/E_n = 1.4$ and to the region centred on the ¹⁰Be peak.

F. M. Marques et al., PRC 65, 044006 (2002)

Tools for structure studies

- Different ways to study the same problem !

ex: shell closures with mass measurements, inelastic scattering, coulex, transfer reactions etc....

BUT

- Different ways to confirm a new feature !

one information --> one piece of the puzzle in structure

+ complementary informations

- Tools depends on the beam energy and intensity

Tools for structure studies

	Transfer Reactions >10 ⁴ pps	Single particles properties, clustering
Co	Breakup or knockout > 10 ² pps	Single particles properties
mplex	Coulomb excitation > 10 ² pps	B(E2)
ity	Inelastic scattering > 10 pps	Collectivity 2 ^{+,} 3 ⁻ states
	β decay > a few per min	E(2+)
	Mass measurements > a few per	day
	Existence one (preferably 2)	

Nuclear structure at the driplines

Halo nuclei

Halo nuclei

Exotic nuclei anormally big

Measurement of reaction cross sections I. Tanihata et al., Phys. Rev. Lett. 55 (1985) 2676

Masse(A)

Rutherford's experiment $\sigma_{\rm R} = \pi \; ({\rm R}_{\rm proj} + {\rm R}_{\rm target})^2$

⁹Li

 ^{12}Be

α

Ground state wave function of ⁶He

M. Zhukov et al. Phys. Rep. 231 (1993) 151

• ⁶He binding energy well reproduced with a t+t configuration

A. Csoto, PRC 48 (1993) 165

K. Arai et al., PRC 59 (1999) 1432

● Analogy with ⁶Li

⁶Li(p,³He)α clusters α+d and ³He+t same importance !!

 $\theta_{cm} \, deg$

Ground state wave function of ⁶He

Coupled channels calculations

Search for t+t clustering in ⁶He L.G et al., NPA, 378 (2004) 426c

t+t exist but very small !!

Investigation of ⁶He cluster structures L.G et al., accepted in PRC

Ground state wave function of ⁸He

⁶He(2⁺) is predominant
 in the ⁸He_{g,s} wave function

⁶He(2⁺): 66% ⁶He_{g.s}: 33%

⁸He(p,t)⁶He_{g.s}, ⁸He(p,t)⁶He₂₊ @ 60 MeV, Riken

A. Korsheninnikov, PRL 90 (2003) 082501

@ 3.9 MeV, Ganil/SPIRAL with MAYA

lower energy _____ higher cross sections
but optical potentials ?

compound nuclei ?

⁶He(2⁺), ⁶He_{g,s} same weight than Riken

W. Mittig, Ch. E Demonchy thesis

Actar Project: GSI involved

- detection gaz also used as a target
- ✓ very efficient
- ✓ Low detection threshold for particles
- ✓ used as a thick target
- ✓ Large angular acceptance
- ✓ Important reaction energy range

Experiment

 - elastic resonance scattering ⁸He+p → IAS of ⁹He
 - ²⁶F(d,³He)²⁵O

W. Mittig, C.E. Demonchy et al., GANIL

Molecular states

Mass Number

FIG. 1: The Ikeda threshold diagram for nuclei with α clustering. Cluster structures are predicted to appear close to the associated decay thresholds. The energies needed for the decomposition of the normal nucleus into the structures are indicated in MeV (from [127]).

K. Ikeda, Suppl. Prog. Theor. Phys. 464, 1968

Wolfram von Oertzen, private comm.

New Structures

AMD calculations Kanada-Enyo, Horiuchi et al.

Molecular states in ^{10,12}Be

Inelastic scattering Clustering of excited states

M. Freer et al., PRL 82, 1383 (1999)

Collaboration CHARISSA:

N. Orr, M. Marques, LPC Caen M. Freer, Univ. de Birmingham

F. Carstoiu, Univ. de Buccarest

Knockout Test of a new method

Clustering in the ground state

Analogy with one nucleon knockout

Momentum distribution $p \rightarrow l$

 $\sigma_{\alpha} \rightarrow Spectroscopic factor$

Shell evolution

Shell model

- Shell model (~1950):
- Nucléon = independant particle move in an average potential created by the ensemble of the other nucleons
- Reproduces many properties of the nuclei
- Magic numbers : (2,8,20,28,50,82,...)

J. Hans D. Jensen Maria Goeppert Mayer Discovery of the magic numbers Nobel prize 1963

Neutrons number

New magic numbers

- V_{στ} monopole interaction: coupling of proton-neutron spin-orbit partners

but missing in n-rich nuclei

the spin orbit partner of the valence neutrons are not occupied by protons

- N = 16 neutron proton interaction $\pi d5/2 - \upsilon d3/2$

Experimental Evidence from - in beam fragmentation, PRC 69 (2004) 034312

- longitudinum momentum distribution

²⁸O (N=20) ?

- N = 34 neutron proton interaction $\pi f7/2 - \upsilon f5/2$

T. Otsuka et al., Phys. Rev. Lett. 87 (01) 082502

Evolution of magicity with increasing N/Z

Study of Z magic nuclei: O, Ca, Ni, Sn isotopic chains

O. Sorlin et al., PRL 88, 092501 (1994)

Dobaczewski et al., PRL 72, 981 (1994)

Shopping List of Nuclei

SPIRAL II, FAIR ---> EURISOL

N = 16 ²⁴O, ²⁵O, ²⁵F, ²⁶Ne

N = 20 all nuclei in the region of ³²Mg, called the magic inversion land

N = Z = 50 ¹⁰⁰Sn

Vladimir,

Is it so boring ?

Modification de la structure en couches loin de la stabilité

T. Otsuka et al., Phys. Rev. Lett. 87 (01) 082502

A. Ozawa et al., Phys. Rev. Lett. 84 (00) 5493

Observation complémentaire: Augmentation des sections efficaces de réaction dans la même région de noyaux.

N = 34

30 14	2 Si 16
$1f5/2$ π	U 1f5/2
2p1/2 2p3/2	$\frac{10/2}{2p1/2} = \frac{2p1/2}{2p3/2}$
20 1f7/2	$\frac{20}{1}$ 1f7/2
1d3/2	1d3/2
2s1/2 / 1d5/2	2s1/2
8	8

2s1/2 _____ 1d5/2 _____ 8

1f5/2 2p1/2 2p3/2 1f7/2 1d3/2 2s1/2 1d5/2 8

⁴²Si, ⁴⁴P, ⁴⁵S, ⁴⁷Cl ✓ Weakening of shell N=28

1960s-2000s : a long (unsuccessful) quest

two-step reactions :

 $\triangleright p + W \xrightarrow{(Al)} {}^{A}n + {}^{70}Zn \rightarrow {}^{72}Zn [(t,p)]$ $\triangleright {}^{208}\mathrm{PO} (\pi^{-}, \pi^{+}) {}^{4}n \xrightarrow{({}^{208}\mathrm{PO})} {}^{212}\mathrm{PO} + \gamma$

▶
$$\pi$$
 charge exchange :
▷ 3 H (π^{-}, γ) 3 n
▷ ${}^{\{3,4\}}$ He (π^{-}, π^{+}) $\{3,4\}n$

▶ multinucleon transfer : ▷ $^{7}L1 + ^{11}B \rightarrow ^{14}O + 4n$ ▷ $^{7}L1 + ^{7}L1 \rightarrow {}^{10,11}C + {}^{4,3}n$

ENAM'04 [Sep13] "Neutral Nuclea"

F.M. Marqués (1)

1960s-2000s : a long (unsuccessful) quest

two-step reactions :

 $\triangleright p + W \xrightarrow{(Al)}{\longrightarrow} {}^{A}n + {}^{70}Zn \rightarrow {}^{72}Zn \left[(t,p) \right]$ $\triangleright {}^{208}\mathrm{PO} \left(\pi^{-}, \pi^{+} \right) {}^{4}n \xrightarrow{({}^{208}\mathrm{PO})}{\longrightarrow} {}^{212}\mathrm{PO} + \gamma$

- multinucleon transfer :
 - $\begin{tabular}{ll} &\vartriangleright \ ^7L\mathfrak{l} + {}^{11}\mathsf{B} \rightarrow {}^{14}\mathsf{O} + 4n \\ &\vartriangleright \ ^7L\mathfrak{l} + {}^7L\mathfrak{l} \rightarrow {}^{\{10,11\}}\mathsf{C} + \{4,3\}n \end{tabular} \end{tabular} \end{tabular}$

Look inside very n-rich nuclei III

Modification de la structure en couches loin de la stabilité

—Inversion des couches $1p_{1/2}$ et $2s_{1/2}$ pour les noyaux riches en neutrons

J. Winfield et al, Nucl. Phys. A683(2001) 48

Tools for structure studies

¹¹Li ⁿ ⁹Li ⁿ

Faisceaux

GANIL - SISSI fragmentation : (déjà mesurés)

- ¹⁶C 40 MeV/A : ¹⁸O 63 MeV/A + ⁹Be 800 mg/cm² ----> 10⁴ pps
- ²⁰O 43 MeV/A : ⁴⁰Ar 77 MeV/A + ¹²C 360 mg/cm² ----> 5 10³ pps
- ²²O 46 MeV/A : ³⁶S 77 MeV/A + ¹²C 540 mg/cm² ----> 1200 pps
- ²⁵F 40 MeV/A : ³⁶S 77 MeV/A + ¹²C 530 mg/cm² ----> 200 pps

<u>GANIL - SISSI fragmentation</u> : (estimation code LISE)

¹⁸C 40 MeV/A : 40 Ar 77 MeV/A + 12 C 360 mg/cm² ----> 3 10³ pps

GANIL - SPIRAL II :

⁶⁸Ni : 10⁵ pps rapport spiral II, p7

Fonction d'onde de l'⁶He: t + t ?

Energie de liaison de l'⁶He reproduite avec une configuration triton-triton A. Csoto, PRC 48 (1993) 165

Calculs microscopiques

TISM: $S_{t-t} = 1.77$ Yu. F. Smirnov, PRC 15 (1977) 84 $S_{\alpha-2n} = 1.12$ RGM: $S_{t-t} = 0.49$ K. Arai et al., PRC 59 (1999) 1432

Analogie avec ⁶Li ⁶Li(p,³He)α: clusters α+d et ³He+t

$$(\alpha + d) + p \longrightarrow {}^{3}\text{He} + \alpha \longrightarrow S_{\alpha-d} \quad 0.69$$
$$({}^{3}\text{He} + t) + p \longrightarrow \alpha + {}^{3}\text{He} \qquad S_{3\text{He-t}} \quad 0.44$$

M.F Werby et al., PRC 8 (1973) 106

- $\begin{array}{cccc} \bullet & A + a & \longrightarrow & B + b & & x: nucléon(s) transféré(s) \\ & \{B+x\}+a & \longrightarrow & B + \{a+x\} & & ici: t, 2n \end{array}$
- $\frac{d\sigma}{d\Omega}$ dépend de T_{AB} : élément de matrice de la réaction
- $\mathbf{T}_{AB} = \langle \chi_{bB} \Phi_b \Phi_B | W_{bB} | \Psi_{aA}^+ \rangle$ post $\chi_{aA}^+ \Phi_a \Phi_A \quad DWBA$
- $W_{bB} = V_{bB} U_{bB}$ • \uparrow $V_{aB} + V_{xB}$ décrit la diffusion élastique de b+B

Voies couplées

cible
•
$$\Psi_{CRC} = \sum_{i} \Phi_{i}^{t} \Phi_{i}^{p} \chi_{i}^{t-p}$$

projectile

 $\bullet (\mathbf{H} - \mathbf{E}) \Psi_{\mathrm{CRC}} = \mathbf{0}$

i=a,b,c... partitions de masse

Exemple: 6He + p, 5He + d, 4He + t

- Projection sur les différents états d'une partition de masse
- Système d'équations intégro-différentielles couplées reliant les inconnues χ^{t-p}_i
- Résolution système + conditions asymptotiques
- $\vdash \text{Amplitudes de diffusion} \quad \mathbf{f}_{ab}, \ \mathbf{f}_{bc}$
- **L** Section efficace différentielle de la réaction

Etats moléculaires du ^{10,12}Be

• <u>Méthode</u>

- distributions p_{//} et p_⊥ expérimentales des fragments chargés
- comparaison modèle de Glauber (F. Carstoiu)
- simulation Monte-Carlo: convolution distributions moment théoriques avec effets expérimentaux
- <u>Futur</u>

2 Events correlation

Excitation Energy (MeV

Dispositif expérimental

$^{6}\text{He} + p \implies ^{3}\text{H} + ^{4}\text{He}$

Détection: ⁴He et ³H

MUST

ou

<u>SPEG</u>

Collaboration:

Ganil Dapnia, IPNO, Bruyères-le-Châtel

⁶ $\mathcal{H}e(p,t)^{4}\mathcal{H}e$ 150 $\mathcal{M}eV$

> bon accord entre les données obtenues avec SPEG et MUST

Single-Neutron Removal: p-sd shell

Expt v's Glauber Theory + Shell Model: Sauvan, et al., PRC (2004)