Experimental cross sections and velocities of the light nuclides produced in the proton-induced fission of ²³⁸U at 1 GeV

M. VALENTINA RICCIARDI¹

K. -H. SCHMIDT¹, F. REJMUND¹, T. ENQVIST¹, P. ARMBRUSTER¹, J. BENLLIURE²,
M. BERNAS³, B. MUSTAPHA³, L. TASSAN-GOT³,
C. STEPHAN⁴, A. BOUDARD⁴, S. LERAY⁴, C. VOLANT⁴,
S. CZAJKOWSKI⁵, M. PRAVIKOFF⁵

- 1 GSI Darmstadt, Germany
- 2 Universidad de Santiago de Compostela, Spain
- 3 IPN Orsay, France
- 4 DAPNIA / SPhN CEA / Saclay, France
- 5 CEN Bordeaux, France

PART I:

EXPERIMENT AND RESULTS

THE EXPERIMENT: 1 A·GeV $^{238}U \rightarrow p$

Advantages of the inverse kinematics:

- \bullet complete identification
- \bullet knowledge of the kinematics

THE FRS AT GSI AND THE EXPERIMENTAL SET-UP for LIGHT RESIDUES

Once mass and charge are identified (A, Z are integer numbers) the velocity is calculated from B_{ρ} : very precise evaluation! $\beta \gamma c = \frac{e}{m_0} \cdot \frac{A}{Z} \cdot B \rho$

RESOLUTION

DISCRIMINATION OF FISSION EVENTS

Z=26

VELOCITY OF ALL RESIDUES

Evidence for a "binary" decay

CROSS SECTIONS OF THE LIGHT RESIDUES

Data available at: http://www-w2k.gsi.de/charms/data.htm

PART II:

INTERPRETATION OF THE EXPERIMENTAL RESULTS

VELOCITY OF THE RESIDUES

We can interpret the counts in the two wings as very asymmetric fission products in proton-induced reactions on ²³⁸U

TRANSITION FROM FISSION TO EVAPORATION

Velocity: from scission-point model towards asymmetric decay from undeformed nucleus

• Mean velocities in the frame of the fissioning nucleus

²³⁸U, ¹⁸⁵Au = compound nuclei

- scission-point model (deformed nuclei)
- · Nucleus-nucleus fusion approach (undeformed nuclei)

CROSS SECTIONS: MASS AND CHARGE DISTRIBUTIONS

TRANSITION FROM FISSION TO EVAPORATION

Mass distribution: the statistical transition-state model

OUR STATISTICAL MODEL

THE FISSION MODEL: THE FISSION PROBABILITIES

Fission decay width: transitionstate method of Bohr and Wheeler

level density of the compound nucleus

 $\Gamma_f^{BW} \approx T_f \frac{\rho_f (E - B_f)}{\rho_C(E)}$ level density of the transition states in the saddle-point configuration

The fission decay widths depend explicitly on time (dynamical evolution of the system along its path to fission)

(influence of nuclear viscosity)

B. Jurado, PhD thesis, Universidad de Santiago de Compostela, 2002.

THE FISSION MODEL: THE FISSION-FRAGMENT PROPERTIES (SEMIEMPIRICAL)

Fig. 1. Potential energy at the fission barrier for 238 U (upper part) and 208 Pb (lower part), as a function of mass asymmetry expressed by the neutron number of one of the preformed fragments.

THE VERY ASYMMETRIC FISSION: THE INTERMEDIATE-MASS FRAGMENT EMISSION

IMF decay width

The barrier is calculated using the fusion nuclear potential of Bass

ADDITIONAL EFFECTS

- 1 Thermal expansion of the nucleus
- 2 Pre-formation factor
- 3 Surface effects on the level density
- 4 Deformation of the nucleus

For light systems \rightarrow Thermal instabilities (break-up)

LIGHT NUCLIDES FROM 1 A.GeV ²³⁸U + p

The experimental data:

 Formation cross-section for every isotope, along with its velocity distribution, could be measured at the FRS

The physics:

- •Yields and velocities of light nuclides from 1 A·GeV ²³⁸U + p indicate a transition from fission to evaporation
- •The experimental data could be successfully reproduced by a statistical model, combining a fission approach with the evaporation of intermediate-mass fragments
- No indications for a multifragmentation-type of decay have been observed

Partial widths Γ_n and Γ_p for emission of neutrons and protons.

$$\Gamma_n = \frac{2mR^2g}{^22\pi\rho(E-E_r^{gs})} \int_0^{E-B_n} \varepsilon\rho(E-B_n-\varepsilon) d\varepsilon$$

$$\Gamma_{p} = \frac{2mR^{2}g}{^{2}2\pi\rho(E - E_{r}^{gs})}$$
$$\sum_{\substack{E-B_{p}\\\varepsilon_{c}}}^{E-B_{p}} \varepsilon \left(1 - \frac{\varepsilon_{c}}{\varepsilon}\right)\rho(E - B_{p} - \varepsilon)d\varepsilon$$

(Approximation without considering tunneling.)

 Γ_p is reduced by the Coulomb barrier ε_c .

Modelling the Width in A and N/Z of Fission-Product Isotopic Distributions

Approximated parabolic potential

$$U(\eta) = C_{\eta} \cdot (\eta - \eta_o)^2$$

Statistical population:

$$Y(\eta) \propto \exp\left\{2\sqrt{a(U_0 - U(\eta))}\right\} \rightarrow$$

$$Y(\eta) \propto \exp\left\{-\frac{(\eta - \eta_0)^2}{2\sigma_\eta^2}\right\}$$
 with

$$2\sigma_{\eta}^2 = \frac{T}{C_{\eta}}$$

U = potential energy, $\eta =$ either A (mass split) or N/Z (polarisation), $C_{\eta} =$ stiffness of the potential, T = nuclear temperature.