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1. Introduction _ .
a:- - Static: Even-odd staggering of Q value |
b.~ Dynamic: Pair breaking from saddleto scission, at scission
2. Thermodynamics, grand-canonical
a.— Boltzmann gas (Wilkins and Steinberg)
b. Shifted Fermi gas (BCS) (Fong, Asghar)
3. Other statistical approaches
a. Combinatory of'pairs (Nifenecker)
b. Statistics of quasi-particles (Mantzouranis and Nix)
4. Excited statesof®a finite Fermionic system with fiXedeenergy
a. Analytical model of Strutinsky
b. Super-fluid nuclear model of Ighatyuk
5. Confrontation with observations
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Static and dynamical aspects
of the even-odd effect in fission
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Controversy:

Case: Even-Z nucleus passes the
fission barrier fully paired.

Even and odd charge splits differ
in Q value by A.

Odd-Z fragments can only be
produced by quasi-particle
excitations before or at scission.

Can the statistical model “explain” the even-odd effect in the yields?
e Quasi-particle excitations on the way from saddle to scission.
o Yields of different fragments due to the number of available states.

Alternative option: Pair breaking during neck rupture.



Even-odd effect
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Thermodynamical approach

Even-odd effect from Boltzmann gas
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Ideal gas:

y oc eXp —E
T

(Boltzmann)

Applied e.g. by Wilkins and
Steinberg, PLB42 (1972) 141, in
their scission-point model.

Not appropriate for finite super-fluid Fermionic system!



Shifted Fermi-gas model

Shifted Fermi-gas model

L . Boltzmann replaced by
Fermi-gas level density

Asymptotic behaviour
modelled by shift of

A for even-odd

and

2 A for even-even nuclei.

odd nucleus

en-odd nucleus

Even-even nucleus

E* / MeV

Even-odd fluctuations in Q value are exactly balanced by shift of
level density (e.g. Medkour et al., JPG 23 (1997) 103).
No even-odd effect in yields expected!



Other statistical approaches

Nifenecker et al. ZPA308 (1982) 39:
Statistical combinatorial approach based on the number of broken pairs.

Mantzouranis and Nix, PRC25 (1982) 918:
Statistical approach based on the ratio of the number of quasiparticle

excitations.

Both approaches are not consistent with the basics of statistical model:
The number of available states.



Excited states of a super-fluid Fermionic system

1. Analytical approximation of Strutinsky (1958)
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e Fixed energy (not temperature!)
e Super-fluid system
e Restriction to one component

p.(U) = "0 —nd).

[(n/2)1](n-1)!

Approximation: A does not depend
on energy. (This is not critical for
the lowest excitation energies
considered here)

Relation to shifted Fermi-gas model:
1. Deviations for lowest energies appear!
2. Extension to two-component system required!



Excited states of a super-fluid Fermionic system
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Neutron and proton excitations with different numbers of
guasiparticles are in competition!



Excited states of a super-fluid Fermionic system

3. Application to fission by Rejmund et al. NPA678 (2000) 215

Probability for fully paired proton
configuration:
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(Po” = observed even-odd effect!)

o 05} 1 Finite probability for U > A that protons
- \\ 1 (neutrons) remain completely paired.
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0 2 J 6 ; hﬂd % L Purely statistical reasoning can explain the
saddle / M€ even-odd effect in fission!




Observations

1. Magnitude of proton and neutron even-odd effects,
2. Energy dependence

] 10 Explanation of drastic
: difference between proton and
neutron even-odd effect.
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“Reasonable” excitation-
energies at scission.
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Data for high TKE: no neutron evaporation possible.



Deduced intrinsic excitation energy at scission

Prme o ] 0z: Fraction of proton QP excitations at
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Observations
3. Variation with asymmetry (Steinhauser et al. NPA634 (1998) 89)
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Even-odd effect in mass-asymmetric splits (also for odd-Z nuclei!)
due to larger single-particle level density in larger fragment.



Conclusion

Statistical considerations predict even-odd effect in fission.
Rigorous formulation of the level density is essential.

Many features of experimental data are described:
Amplitude in neutron and proton'number,
Decrease with excitation energy,

Increase with mass/asymmetry.

This success revitalizes the discussion on dynamical or
statistical interpretation of the fission process.



