FISSION BARRIERS OF EXOTIC NUCLET

Aleksandra Kelić and Karl-Heinz Schmidt
GSI, Darmstadt, Germany

Motivation

- Limited experimental information on the height of the fission barrier \Rightarrow in any theoretical model the constraint on the parameters defining the dependence of the fission barrier on neutron excess is rather weak.
- This imposes a large uncertainty in estimating the fission barriers of exotic nuclei, which are relevant in some astrophysical scenarios, e.g. the r-process.

Macroscopic part of fission barriers for U isotopes

Idea

Predictions of theoretical models are examined by means of a detailed analysis of the isotopic trends of ground-state masses and fission barriers.

$$
\delta U_{\text {sad }}=\underbrace{E_{f}^{\exp }+M^{\exp }}_{\begin{array}{c}
\text { Experimental } \\
\text { saddle-point } \\
\text { mass }
\end{array}}-(\underbrace{M^{\text {macro }}+E_{f}^{\text {macro }}}_{\begin{array}{c}
\text { Macroscopic } \\
\text { saddle-point } \\
\text { mass }
\end{array}})
$$

-Bjørnholm \&Lynn,
Rev. Mod. Phys. 52
-Dahlinger et al,
Nucl. Phys. A376

Studied models

1.) Droplet model (DM) [Myers 1977], which is a basis of often used results of the Howard-Möller fission-barrier calculations [Howard\&Möller 1980]
2.) Finite-range liquid drop model (FRLDM) [Sierk 1986, Möller et al 1995]
3.) Thomas-Fermi model (TF) [Myers\&Swiatecki 1996, 1999]
4.) Extended Thomas-Fermi model (ETF) [Mamdouh et al. 2001]
W.D. Myers, ,,Droplet Model of Atomic Nuclei", 1977 IFI/Plenum
W.M. Howard and P. Möller, ADNDT 25 (1980) 219.
A. Sierk, PRC33 (1986) 2039.
P. Möller et al, ADNDT 59 (1995) 185.
W.D. Myers and W.J. Swiatecki, NPA 601 (1996) 141
W.D. Myers and W.J. Swiatecki, PRC 60 (1999) 0 14606-1
A. Mamdouh et al, NPA 679 (2001) 337

Results - U case

$$
\delta U_{\text {sad }}=E_{f}^{\text {exp }}+M^{\text {exp }}-\left(M^{\text {macro } o}+E_{f}^{\text {macro }}\right)
$$

Any general trend would indicate severe shortcomings of the model

Results - general

- $D M, \overline{A_{1}}=0.15 \mathrm{MeV}$
$\triangle \mathrm{TF}, \overline{\mathrm{A}_{1}}=0.05 \mathrm{MeV}$
- FRLDM, $\overline{A_{1}}=-0.04 \mathrm{MeV}$
- ETF, $\overline{\mathrm{A}_{1}}=-0.12 \mathrm{MeV}$

Conclusion

The results of this study show that the preferential models should be the finite-range liquid-drop model and the Thomas-Fermi model. Severe doubts in the consistency of the droplet model are seen. Similar indications for ETF.

Macroscopic part of fission barriers for U isotopes

