High-resolution experiments on projectile fragments – A new approach to the properties of nuclear matter

A. Kelić¹, J. Benlliure², M. Bernas³, E. Casarejos², T. Enqvist¹,
V. Henzl¹, D. Henzlova¹, J. Pereira², M. V. Ricciardi¹, K.-H. Schmidt¹,
Ch. Schmitt¹, J. Taieb⁴, O. Yordanov¹

¹GSI - Darmstadt, ²Univ. Santiago de Compostela, Spain, ³IPNO, France, ⁴CEA, France

<u>Fundamental questions</u>: How does the nuclear matter "look like"? How does it behave under extreme conditions: high densities and temperatures, extreme N/Z ratio...?

Why high-resolution experiments?

Heavy residues \rightarrow Liquid phase: Sensitivity to the temperature of a possible phase transition. *Needs* : full identification in MASS and NUCLEAR CHARGE over whole nuclear chart!

Transport theory (Shi et al., PRC 64 (2001) 034061) \rightarrow Longitudinal momentum of heavy fragmentation residues is selectively sensitive to the momentum dependence of the nuclear mean field. *Needs* : high-precision momentum measurements!

 \Rightarrow High-resolution magnetic spectrometer FRS-GSI

New observables:

- <u>Isospin thermometer</u> (*K.H. Schmidt et al., NPA 710 (02) 157*) → Thermal instabilities in nuclear matter.
- <u>Spectator response to the participant blast</u> (*M.V. Ricciardi et al, PRL90 (03)* 212302) \rightarrow Momentum dependence of the nuclear mean field.

Experiment at the FRS - GSI

After identification of Z and A (Z and A are integer numbers) Bp provides velocity with high precision \rightarrow resolution of 5.10⁻⁴ in $\beta \cdot \gamma$!

But: No correlation to other products, low acceptance for fission fragments and very light fragmentation residues ($A \leq 18$).

Experimental results - e.g. ²³⁸U + Pb 1 A GeV

Systematic information on nuclide distributions and velocities!

Response of the spectator to the participant blast

-M.V. Ricciardi et al., PRL 90 (2003) 212302 -

The data give an <u>early signature</u> (the acceleration of the spectator is acquired during contact with the fireball). Sensitivity to the <u>momentum dependence</u> of the nuclear mean field.

Valuable basis for general verification of transport calculations!

Isospin thermometer - tracing-back T at the freeze-out

- K.-H. Schmidt et al., NPA A 710 (2002) 157 -

Light residues keep the memory of the initial $N/Z \Rightarrow \underline{\text{Isospin thermometer}}$ $T_{\text{freeze-out}} \approx 5 \text{ MeV} \Rightarrow Compatible with the caloric curve of ALADIN.$

Conclusion

Valuable complementary information on the properties of hot and dense nuclear matter with high-resolution magnetic spectrometers.

More \Rightarrow http://www-w2k.gsi.de/kschmidt/

Response of the spectator to the participant blast L. Shi, P. Danielewicz, R. Lacey, PRC 64 (2001)

BUU calculations : 124 Sn + 124 Sn (0.8 GeV/u) and 197 Au + 197 Au (1 GeV/u)

How to distinguish fragmentation and fission?

Fragmentation: Almost always fully accepted. **Fission:** Only forward and backward component accepted.

²³⁸U + Ti, 1 A GeV: M.V. Ricciardi, J. Pereira, PhD-Thesis

List-mode data provided by the ALADIN group and analysed by M. V. Ricciardi

Separation between multifragmentation and fragmentation. Z > 20 is the heaviest fragment in the reaction