Precision Studies of Relativistic Nuclear Collisions

Karl-Heinz Schmidt

For the CHARMS collaboration

Gesellschaft für Schwerionenforschung (GSI) Darmstadt, Germany

- Motivation
- Experimental approach
- Results

Nuclear technology

- Nuclear structure
- Dissipation

Excitation of the nucleon

Equation of state

Summary

Motivation: Production of heavy residues in relativistic nuclear collisions

Design of ADS for transmutation of radioactive waste

• Production of rare isotopes (FAIR, RIA)

• Spallation in interstellar medium ...

Physics of semi-peripheral nuclear collisions and spallation reactions

Spectators:

Fermi sphere (momentum space) Goldhaber, PLB 53 (1974) 306

"Swiss-cheese like" Fermionic system

- Punching holes in Fermi sphere
- Thermalization
- Expansion break-up freeze-out • Nörenberg et al., EPJ A9 (2000) 327
- Evaporation and fission

Participants:

Hot and dense nuclear matter (EoS)

- Incompressibility (statics)
- Momentum-dependent mean field (dynamics)

The Experimental Approach: Inverse Kinematics

Conventional experiments detect target-like reaction products by gamma decay

Suffer from:

- Stopping of the products in the target
- Radioactive decay before detection

GSI-experiments investigate projectile-like reaction products in-flight

Requires:

- A powerful heavy-ion accelerator
- Adapted high-resolution in-flight detection devices

The GSI Facility

Installations used for the experiments:

The Fragment Separator (FRS)

- A/Z identified by $(B\rho)_2$ and ToF in FRS $B\rho = \rho/q \sim A \cdot \gamma \cdot v/Z$
- Z identified by ΔE in ionization chamber $\Delta E \sim Z^2 / v^2$

 \rightarrow Z and A are exactly known.

• Velocity precisely determined by $(B\rho)_1$ $B\rho = p/q \sim A \cdot v \cdot v/Z$

 \rightarrow Relative precision 5.10⁻⁴

Nuclide Identification Pattern

¹³⁶Xe + Pb, 1 A GeV

Complete separation in A and Z

D. Henzlova, PhD thesis

Nuclide distributions

Cross sections of 1368 nuclides determined.

P. Armbruster et al., Phys. Rev. Lett. 93 (2004) 212701
J. Taieb et al., Nucl. Phys. A 724 (2003) 413
M. Bernas et al., Nucl. Phys. A 725 (2003) 213
M. V. Ricciardi et al., in preparation

```
Systems investigated: (analyzed by)

<sup>238</sup>U + <sup>1,2</sup>H,Ti,Pb (J. Taieb*, M. Bernas, M. V. Ricciardi*,

E. Casarejos*, J. Pereira*, T. Enqvist)

<sup>208</sup>Pb + <sup>1,2</sup>H, Ti (T. Enqvist, B. Fernandez*, A. Kelic, L.Audouin*)

<sup>197</sup>Au + <sup>1</sup>H (F. Rejmund, J. Benlliure)

<sup>124,136</sup>Xe + <sup>1</sup>H,<sup>208</sup>Pb (P.Napolitani*, D.Henzlova*, M.Fernandez*)

<sup>56</sup>Fe + <sup>1</sup>H,Ti (C. Villagrasa*, P. Napolitani*)

<sup>197</sup>Au + <sup>197</sup>Au (V. Henzl*)

Energies: 0.2 to 1.5 A GeV
```

*PhD theses

Strongly enhanced production of eveneven N=Z nuclei

Evidence for neutron-proton pairing / alpha clustering

Evidence for transient effects in fission

Motion from g.s. to saddle is critically damped. J. Taieb et al., Nucl. Phys. A 724 (2003) 413 B. Jurado et al., Phys. Rev. Lett 93 (2004) 072501

Fission channels

- Z-distributions from e.m.-induced fission of 70 secondary beams (E* ~ 11 MeV).
- Transition from asymmetric to symmetric fission mapped.

K.-H. Schmidt et al., Nucl. Phys. A 665 (2000) 221 F. Rejmund et al, Nucl. Phys. A 678 (2000) 215

Caloric curve from ALADIN (An indication for the liquid-gas phase transition)

The 4 nuclides, entering into the analysis:

FRS Data: The Isospin Thermometer

- Memory on N/Z of projectile is preserved for all fragments.
- The data are reproduced with a three-stage model: Abrasion – Break-up – Evaporation.
- Indication for constant freeze-out temperature of ≈ 6 MeV.

M. V. Ricciardi, D. Henzlova, PhD theses K.-H. Schmidt et al., Nucl. Phys. A 710 (2002) 157

Nuclear Charge-Exchange Reaction

- Charge-exchange reactions: ¹H(²⁰⁸Pb,²⁰⁸Bi)x, ²H(²⁰⁸Pb,²⁰⁸Bi)x at 1 A GeV
- Quasielastic scattering and excitation of the ∆(1232) resonance
- Excitation of the nucleon in the nuclear medium

A.Kelic, Phys. Rev. C 70 (2004) 064608

Participant's blast on the spectators

- Unexpected acceleration in violent collisions.
- Valuable information on the EOS of nuclear matter.
- Information on momentum-dependent mean field.

M.V. Ricciardi, V. Henzl, PhD theses M. V. Ricciardi et al., PRL 90 (2003) 212302 L. Shi, P. Danielewicz, R. Lacey, PRC 64 (2001) 034601

The FAIR Project

Improved experimental possibilities for nuclearreaction experiments by

- Higher beam intensities
- Higher beam energies
- New spectrometers and rings

Summary

- In-flight investigations of projectile-like reaction products at the GSI heavy-ion facility.
- Mapping of nuclide production cross sections.
- Relevance for nuclear technology and astrophysics
- Yields reveal neutron-proton pairing.
- Fission dynamics critically damped.
- Mapping of the **fission channels**.
- Indications for a **break-up phase** from *N*/*Z* ratios.
- Excitation of the nucleon in the nuclear medium.
- Acceleration of projectile fragments (EoS).
- ... and many more observations (see also http://www-w2k.gsi.de/charms)

CHARMS Collaboration

(Collaboration for high-accuracy measurements of nuclear reactions with the FRS)

P. Armbruster, L. Audouin, C.-O. Bacri, J. Benlliure, M. Bernas, B. Berthier, A. Botvina, A. Boudard, E. Casarejos, J. J. Connell, S. Czajkowski,
P. Danielewicz, J.-E. Ducret, T. Enqvist, B. Fernandez, M. Fernandez, J. S. George, A. Heinz, K. Helariutta, V. Henzl, D. Henzlova, A. Ignatyuk, A. R. Junghans,
B. Jurado, A. Kelić, A. Krasa, A. Kugler, T. Kurtukian, R. Legrain, S. Leray, B. Mustapha, P. Napolitani,
M. F. Ordonez, J. Pereira, M. Pfützner, R. Pleskac, M. Pravikoff, B. Ranjan Behera, F. Rejmund, M. V. Ricciardi, K.-H. Schmidt, C. Schmitt, S. Steinhäuser, C. Stéphan, J. Taïeb,
L. Tassan-Got, C. Villagrasa, F. Vivès, C. Volant, B. Voss, A. Wagner, V. Wagner, W. Wlazlo, O. Yordanov

GSI Darmstadt, Germany IPN Orsay, France CEA Saclay, France CENBG Bordeaux, France University of Santiago de Compostela, Spain FZ Rossendorf, Germany MSU, Michigan, USA Yale University, USA CUUP project, Pyhäsalmi, Finland University Helsinki, Finland TU Darmstadt, Germany Nuclear Physics Institute, Rez, Czech Republic California Institute of Technology, Pasadena, USA