

Introduction

Motivation Experimental observables

Experimental techniques

Set-up Mass and nuclear charge identification Velocity distributions

Results

Cross section: Width of the distribution

Mean value of the distribution

Theoretical investigation

BUU Comparison with data

Summary

Acknowledgements

High-Precision Momentum Measurements of Projectile Fragments in Sn+Sn Collisions at 1 AGeV

Ville Föhr^{1,2}

¹GSI Darmstadt

²Department of Physics University of Jyväskylä

ESF Exploratory Workshop - PESC: How To Constrain The High Density Symmetry Energy, 15-18 October, 2009

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Introduction

Motivation

observables

Experimental techniques

Set-u

Mass and nuclear charge identification Velocity distributions

Results

Cross section Width of the distribution

Mean value of the distribution

Theoretical investigation

nivesugation

Comparison with data

Summary

Acknowledgements

Introduction

- Motivation
- Experimental observables

2 Experimental techniques

- Set-up
- Mass and nuclear charge identification

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Velocity distributions

3 Results

- Cross sections
- Width of the distribution
- Mean value of the distribution

4 Theoretical investigation

- BUU
- Comparison with data
- 5 Summary
- 6 Acknowledgements

Introduction

Motivation

Experimental observables

Experimental techniques

Set-up Mass and nucle charge identifica

Velocity distributions

Results

Cross section Width of the distribution

Mean value of the distribution

Theoretical investigation

BUU Comparison wit data

Summary

Acknowledgements

Fundamental interests

Properties of nuclear matter

- static: compressibility, symmetry energy, phase transitions...
- dynamic: viscosity, momentum dependence of the mean field...

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

- Astrophysical and cosmological phenomena
 - Formation and stability of neutron stars
 - Supernova explosions
 - Evolution of the early universe

Experimental observables

Introduction Motivation

Experimental observables

Experimental techniques

Set-up Mass and nuclear charge identification Velocity distributions

Results

Cross sections Width of the distribution

Mean value of the distribution

Theoretical investigation

Comparison wit data

Summary

Acknowledgements

イロト 不得 トイヨト イヨト

= √Q (~

Observables

- 1 Participants
 - Flow
- 2 Spectators
 - Kinematical properties

History of spectator kinematics

Ville Föhr

Introduction

Motivation

Experimental observables

Experimental techniques

Set-up Mass and nucl charge identific

Velocity distributions

Results

Cross section Width of the distribution

Mean value of the distribution

Theoretical

nivestiga

Comparison v

Summary

Acknowledgements

Morrissey systematics Phys. Rev. C39 (1989)

Explained low mass losses

High resolution measurements

- ²³⁸U + Pb T. Enqvist et al. NPA 658(1999)47
- 208_{Pb + Ti} T. Enqvist et al.NPA 703(2002)435465
- ²³⁸U + Ti V. Ricciardi et al. PRL 90(2003)212302
- 197 Au + Au V. Henzl, PhD thesis (2005)
 - ⁵⁶Fe + Ti C. Villagrasa-Canton et al. PRC 75(2007)044603
- 136 Xe + Pb A. Bacquias, PhD thesis (2009)

<v_> for different systems (1 AGeV)

Theoretical investigations

Ville Föhr

Introduction

Motivation

Experimental observables

Experimental techniques

Set-up Mass and nuclear charge identificatio Velocity distribution

Results

Cross section Width of the distribution

Mean value of the distribution

Theoretical investigation

BUU

Comparison with data

Summary

Acknowledgements

Spectator Response to the Participant Blast

・ コ マ メ 雪 マ メ 雪 マ ト メ 目 マ

Sac

BUU calculations

- Sensitivity to
 - Momentum dependence of the mean field
 - NN cross section
- Almost no sensitivity to stiffness of the EOS

S276 Experiment

Ville Föhr

- Introduction
- Motivation Experimental observables

Experimental techniques

Set-up Mass and nuclear charge identification Velocity distributions

Results

- Cross section Width of the distribution
- Mean value of the distribution

Theoretical investigation

- BUU Comparison with data
- Summary
- Acknowledgements

al

- Why ^{112,124}Sn + ^{112,124}Sn at 1 A GeV?
 - Isospin influence on the re-acceleration
 - Symmetric systems assures constant N/Z of the participant zone for all possible impact parameters

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

- Low fission cross section compared to heavier systems
- High enough energy

Experiment setup

Set-up

After mass and charge have been identified the velocity is calculated from B ρ (A, Z are integers): $\beta \gamma = \frac{e}{cm_0} \frac{Z}{A} B\rho$

<ロ > < 同 > < 回 > < 回 > <

3

Sac

Very high precision: $\Delta P/P = 10^{-4}$

Mass and nuclear charge identification GSŤ

Ville Föhr

techniques Mass and nuclear

 $A/\Delta A \approx 400$ $\Delta Z \approx 0.4$

Sac

Gessi Obtaining the velocity distributions

Ville Föhr

Introduction

Motivation Experimental observables

Experimental techniques

Set-up Mass and nuclear charge identification

Velocity distributions

Results

- Cross section Width of the distribution
- Mean value of the distribution

Theoretical investigation

- BUU Comparison v
- Udia
- Acknowledgements

Limited momentum acceptance

 Combining data from several magnetic settings

Limited angular acceptance

Corrections

 Advantage in separating different production mechanisms

nac

Longitudinal velocity distributions

³³S

Ville Föhr

Introduction

Motivation Experimental

Experimental techniques

Set-up Mass and nuclear charge identification Velocity distributions

Results

Cross section: Width of the distribution Mean value of

distribution

Theoretical investigation

BUU Comparison wit data

Summary

Acknowledgements

0.078

£.008

Three observables
 Area Width Mean value

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Production cross sections

Ville Föhr

Introduction

- Motivation Experimenta
- observables

Experimental techniques

Set-up Mass and nuclear charge identification Velocity distributions

Results

Cross sections

- Width of the distribution
- distribution

Theoretical

- BUU
- Comparison with data

Summary

Acknowledgements

Integrals of velocity distributions

イロト イポト イヨト イヨト

590

Width of the distribution

Ville Föhr

Introduction

- Motivation Experimental observables
- Experimental techniques
- Set-up
- Mass and nuclear charge identification Velocity distributions

Results

Cross sections

Width of the distribution

Mean value of the distribution

Theoretical investigation

BUU Comparison wit

Summary

Acknowledgements

"Well understood" physics:

Based on Goldhaber model

A.S. Goldhaber. Phys.Lett. B53(1974)306

 Corrected for Coulomb repulsion, multifragmentation and evaporation

A. Bacquias, PhD thesis (2009)

Reveals different production steps during de-exitation

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Sac

Mean value of the distribution

Ville Föhr

Introduction Motivation Experimental observables

Experimental techniques

Set-up Mass and nuclear charge identification Velocity distributions

Results

Cross sections Width of the distribution

Mean value of the distribution

Theoretical investigation

BUU Comparison wit data

Summary

Acknowledgements

Peripheral collisions:

- No clear difference seen
- More central collisions:
 - Sensitivity to collision violence
 - Signs of N/Z dependence ?

・ ロ ト ・ 雪 ト ・ 目 ト

Sac

Comparison with other systems

Ville Föhr

Introduction Motivation Experimental observables

Experimental techniques

Set-up Mass and nuclear charge identification Velocity distributions

Results

Cross section Width of the distribution

Mean value of the distribution

Theoretical investigation

BUU Comparison with data

Summary

Acknowledgements

Theoretical calculations

Introduction

Motivation Experimental

Experimental techniques

Set-up Mass and nuclear charge identification Velocity distributions

Results

- Cross section Width of the distribution
- Mean value of the distribution

Theoretical investigation

BUU Comparison with data

Summary

Acknowledgements

- BUU calculation cannot be compared directly with data
- Need to establish connection between impact parameter and final residue mass

・ロト ・ 四ト ・ 日ト ・ 日ト

= nar

1 ABRABLA

- + Proven to have good prediction power
- Geometrical model of collision
- Can't study microscopical effects

2 BUU

- + Microscopical model
- Difficult to define E*,A,Z
- Time consuming
- No evaporation stage

BUU results **GES** ir

Introduction

Motivation Experimental

Experimental techniques

Set-up Mass and nuclear charge identificati

Results

- Cross section Width of the distribution
- Mean value of the distribution

Theoretical investigation

BUU

Comparison with data

Summary

Acknowledgements

This used as input for the statistical code ABRABLA

▲ロト ▲理 ト ▲ ヨ ト ▲ 国 ト ▲ 日 ト

Comparison with data

Ville Föhr

Introduction

Motivation Experimental

Experimental techniques

Set-up Mass and nuclear charge identification Velocity distributions

Results

- Cross section Width of the distribution
- Mean value of th distribution

Theoretical investigation

BUU

Comparison with data

Summary

Acknowledgements

Best correlation seen with MD + NN cross section

▲ロト ▲圖 ▶ ▲ 画 ト ▲ 画 ■ めんの

Comparison with data

Ville Föhr

Introduction

Motivation Experimenta

Experimenta

Set-up Mass and nuclear charge identification Velocity distributions

Results

Cross section Width of the distribution

distribution

Theoretical investigation

BUU

Comparison with data

Summary

Acknowledgements

Same model parameters for 3 different systems

197 Au + Au data by V.Henzl, PhD thesis (2005)

Qualitative agreement very good!

・ロト ・ 四ト ・ 日ト ・ 日ト

Sac

-

Introduction

Motivation Experimental

- Experimenta
- techniques Set-up
- Mass and nuclear charge identification Velocity distributions

Results

Cross section Width of the distribution

distribution

Theoretical investigation

BUU Comparison with data

Summary

Acknowledgements

- Re-acceleration phenomena is seen in all systems, its strength depends on the "violence" of the collision
- Results support momentum dependent mean field and free NN cross section

Outlook

Disentanglement of N/Z from other degrees of freedom
 Better correlation between impact parameter and final fragment mass

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Acknowledgements

Ville Föhr

Introduction

Motivation Experimental observables

Experimental techniques

Set-up Mass and nuclear charge identification Velocity distributions

Results

Cross section Width of the distribution

Mean value of the distribution

Theoretical investigation

BUU Comparison with data

Summary

Acknowledgements

CHARMS

(Collaboration for High-Accuracy Experiments on Nuclear Reaction Mechanisms with Magnetic Spectrometers)

A. Kelic¹, M.V. Ricciardi¹, K.-H. Schmidt^{1,4}

Previous members:

A. Bacquias², V. Henzl³, D. Henzlova³, S. Lukic⁵, P. Napolitani⁴

Special thanks to Pawel Danielewicz³

http://www-w2k.gsi.de/charms/

- 1 GSI, Darmstadt, Germany
- ² CEA, Saclay, France
- ³ MSU, East Lansing, Michigan, USA
- ⁴ GANIL, Caen, France
- 5 Forschungszentrum, Karlsruhe, Germany

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~