Yields expected from secondary Fragmentation at Eurisol

J. Benlliure

Universidad de Santiago de Compostela, Spain

Two-step reaction scheme

J. Taieb and M. Bernas, submitted to NPA

Eurisol '03

Proton-removal channel:

 ✓ only protons are abraded and the induced excitation energy remains below the particle emission threshold

Fission rates

 \checkmark same extraction efficiency for all elements

These yields can be easily scaled to any other scenario (low energy fission), primary intensity or extraction and post-acceleration efficiencies.

Fission rates

Nuclide	²³⁸ U+Be	²³⁸ U+p	I SOL yield	Post-accelerated	
¹³² Sn		380 µb	10 ¹² /s	10 ¹¹ /s	
¹²⁴ Pd	32nb		9 10 ⁷ /s	9 10 ⁶ /s	
⁸⁴ Se	1.15 mb	3.4 mb	9.6 10 ¹² /s	9.6 10 ¹¹ /s	
⁸³ As	503 µb	1.3 nb	3.8 10 ¹² /s	3.8 10 ¹¹ /s	
⁸² Ge	207 µb	308 µb	1.1 10 ¹² /s	1.1 10 ¹⁰ /s	
⁸¹ Ga	22 μb	34 µb	9.6 10 ¹⁰ /s	9.6 10 ⁹ /s	
⁸² Ga	4.3 μb		1.2 10 ¹⁰ /s	1.2 10 ⁹ /s	
⁸³ Ga	810 nb		2.2 10 ⁹ /s	2.2 10 ⁸ /s	
⁸⁰ Zn	1.2 μb		3.4 10 ⁹ /s	3.4 10 ⁸ /s	
⁷⁹ Cu	15 µb		4.2 10 ⁷ /s	4.2 10 ⁶ /s	
⁷⁸ Ni	200 pb		5.6 10 ⁵ /s	5.6 10 ⁴ /s	

Fragmentation models

COFRA:analytical description of
cold-fragmentation reactionsEPAX:semi-empirical parameteri-
zation of measured xs

Two-step process:

n

1 Prefragment formation (statistical equilibrium)

- Mass loss: impact parameter
 - geometry
- N/Z: hypergeometrical distribution
- Excitation energy: particle
 hole excitation+final interactions
 - 2 Neutron evaporation
 - ✓ Binding energies+temperature

Validation of the fragmentation codes with neutron-rich projectiles and medium energies !! Eurisol '03

(EPAX 2.1)

Benchmark of fragmentation models

Fragmentation of neutron-rich Projectiles ¹³²Sn

EPAX predicts larger production of neutron-rich isotopes

Ν

Eurisol [^]O3

Proton-removal channels: EPAX, COFRA

Fragmentation of ¹³⁶Xe at 1 A GeV

 $^{136}Xe + Be \rightarrow X$ (preliminary data: M. Fernández et al.)

Fragmentation of ¹³⁶Xe at 1 A GeV

 136 Xe + Be \rightarrow X

Fragmentation at medium energies

(25 MeV/nucleon) ⁶Kr+ ^{124,112}Sn

100

Eurisol 23

G.A. Souliotis et al. PLB 543 (2002) 163

Role of the energy in the target thickness

E _i (A MeV)	20% of range of ¹³² Sn in Be(mg/cm ²)	50% of range of ¹³² Sn in Be(mg/cm ²)		
100	114	286		
200	365	912		
400	1083	2709		

Production of ¹²⁴Pd in the fragmentation of ¹³²Sn at different energies

	20% of range of ¹³² Sn in Be(mg/cm ²)			50% of range of ¹³² Sn in Be(mg/cm ²)		
E _i (A MeV)	Rate s ⁻¹	E(A MeV)	ΔE/E(%)	Rate s ⁻¹	E(A MeV)	∆E/E(%)
100	1.8 10 ⁴	86.8	0.63	4.4 10 ⁴	66.9	2.3
200	5.5 10 ⁴	173.8	0.72	1.3 10 ⁵	131.8	2.7
400	1.4 10 ⁵	346.1	0.80	2.8 10 ⁵	260.0	3.0

Yields in secondary fragmentation

Two-step schemes: fission + cold fragmentation

Yields in secondary fragmentation

Two-step schemes: fission + cold fragmentation

Yields in secondary fragmentation

EURI SOL two-step Primary beam: 1 mA Production target: 100 g/cm² UCx Fragmentation target: Be 20% of range

SI S200 in-flight fragmentation/fission Primary beam: 10¹² ions/s Production target: 2 g/cm² Be

A two-step reaction scheme in EURI SOL will lead to larger productions of isotopes along N=82 and N=50 than the future SI S200 project at GSI

Conclusions

A two-step scenario (fission+fragmentation) is a promising tool to produce very exotic nuclei with small extraction efficiencies (refractory elements or short lived isotopes). The comprehensive investigation of this scenario leads to the following conclusions:

- Dedicated experiments to investigate the fragmentation of neutron-rich projectiles are needed to benchmark model calculations. However, the fragmentation of ¹³⁶Xe indicates that EPAX overestimates the production of neutron-rich residues

- Measured production cross sections of fragmentation residues at medium energies (20-70 A MeV) provide contradictory conclusions. New data are urgently needed.
- Model calculations indicate that ¹³²Sn and ⁸¹Ga are optimum fission residues to be used as projectiles to produce very exotic nuclei along N=82 and N=50
- These model calculations also indicate that a two-step scenario with EURI SOL will lead to larger production yields of isotopes along N=82 and N=50 that the ones expected with the future in-flight fragmentation facility at GSI

Fission yields

