
Precision measurements on momentum distributions of fragmentation residues for investigating the EOS of nuclear matter

M. V. Ricciardi^a, T. Enqvist^{a,[1]}, J. Pereira^b, J. Benlliure^b, M. Bernas^c, E. Casarejos^b, <u>V. Henzl^a</u>, A. Kelić^a, J. Taieb^{c,[2]}, K.-H. Schmidt^a

> ^aGSI, Planckstr. 1, 64291, Darmstadt, Germany ^bUniversity of Santiago de Compostela, 15706 Santiago de Compostela, Spain ^cInstitut de Physique Nucléaire, 91406 Orsay Cedex, France

[1] Present address: University of Jyväskylä, 40351 Jyväskylä, Finland[2] Present address: CEA/Saclay DM2S/SERMA/LENR, 91191 Gif/Yvette CEDEX, France

Motivation

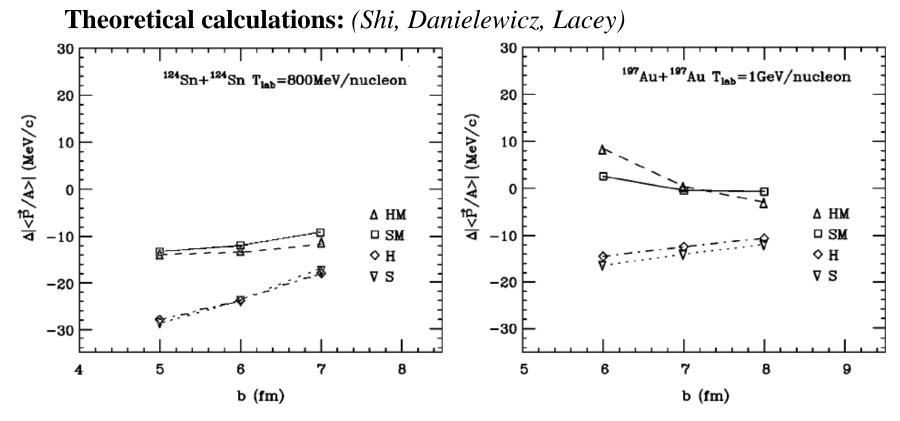
Fragment velocities are related to the EOS !!!

"Common" methods of investigating nuclear EOS

Kaon production

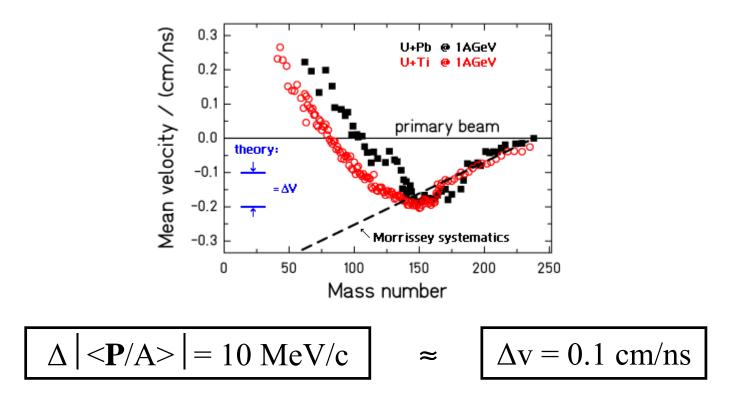
- production yields of kaons in heavy ion collisions
- kaons contain antistrange quark => almost no absorption in the nuclear medium

Collective flow


- pattern of particles escaping from the hot and dense participants zone depends on EOS
 - Both methods: very complex results, support the idea of a soft EOS

<u>BUT</u>: unfortunately momentum (in)dependence of the nuclear mean field still not disentangled

Spectator response


• surviving spectator ,,kicked in its back" by the particles flying from the participants zone at the high-density stage of the collision

What can we learn from the spectators?

- 1) Change of the net momentum (NM) depends on momentum dependence of the nuclear mean field (MF)
- 2) Dependence of NM change on stiffness of EOS almost none
- 3) Different reaction systems => different response

Is the FRS good enough ?

According to the theory:

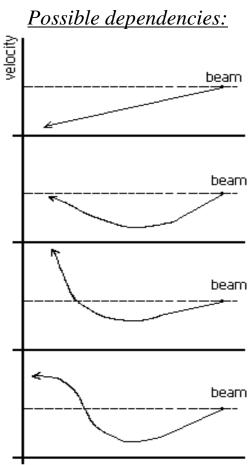
Resolution limit of the FRS is sufficient to distinguish whether the nuclear mean field is momentum dependent or not.

Essential parameters

Beam energy:

• Higher energy of beam particle = more energy in participants zone

stronger re-acceleration effect expected


Projectile and target nuclei mass:

- higher mass of beam+target nuclei = more energy in the participants zone
- various beam-target configuration = different participantspectator mass ratio

shape of the re-acceleration dependence on the survival fragment mass can change

At least a 2-parameter field !!!

Good chance to test even the details of the theory

Preparation of new experimental program "Search for the momentum (in)dependence of the nuclear mean field"

Experimental idea:

scan of 3-4 target-projectile systems for 3-4 different beam energies

Experimental requirements:

beams of U, Pb, Au, Xe ... (???) intensities of 10⁷⁻⁸ ions per spill targets Pb, Au, Ti ... (???)

Planned improvements:

 \Rightarrow S2 position resolution

Beam time requirements:

in the order of weeks (app. 1 week per 1 target-beam system)