Effects of nuclear structure in residual-nuclei production

M. V. Ricciardi⁽¹⁾, K. -H. Schmidt⁽¹⁾, P. Napolitani⁽¹⁾, A. V. Ignatyuk⁽²⁾, F. Rejmund⁽³⁾

(1) GSI - Germany
(2) I PPE, Obninsk - Russia
(3) I PN Orsay - France

OUTLOOK

- 1) Experiment: $^{238}U \rightarrow Ti$ at 1 A·GeV at the FRS (GSI)
- 2) Results: production cross section of residual nuclides
- 3) Data reveal complex structural effects
- 4) Analysis of the results with the statistical model
- 5) Conclusions

THE EXPERIMENT AT THE FRAGMENT SEPARATOR

1 A GeV ²³⁸U beam into a thin Ti target

identification of A/Z from time and position:

$$\frac{A}{Z} = \frac{e}{m_0} \frac{B\rho}{c\beta\gamma} \qquad \beta = \frac{v}{c} \quad with \quad v = \frac{s}{ToF}$$

Observed fine structure in fragmentation

NUMBER OF FINAL STATES

STATISTICAL MODEL with the simplest description of pairing:

- in the masses: $M = M_{\text{LD}} \delta$ $\delta_{\text{oo}} = 0, \ \delta_{\text{oe}} = \Delta, \ \delta_{\text{ee}} = 2\Delta$
- in level density: $\rho \propto \exp(2\sqrt{a(E-\delta)})$

Conclusions

Experiment: light nuclides of 1A·GeV ²³⁸U+Ti FRS allows full (A, Z) identification
→ formation cross section for every isotope

Results:

complex structure of nuclei produced in rather violent collisions

Explanation:

- the statistical model explains the structure of odd-mass nuclei as the most prominent manifestation of pairing
- \rightarrow independence of the reaction mechanisms
- even-odd structure of even-mass nuclei could be related to higher-order structural effects in the level density
- → yields from highly excited nuclei are a rich source of information on nuclear structure.

