Response of the Spectators to the Participants Blast as a Probe of the Momentum-Dependent Nuclear Mean Field

M. V. Ricciardi^a, T. Enqvist^{a,[1]}, J. Pereira^b, J. Benlliure^b, M. Bernas^c, E. Casarejos^b, <u>V. Henzl^a</u>, A. Kelić^a, J. Taïeb^{c,[2]}, K.-H. Schmidt^a

> ^aGSI, Planckstr. 1, 64291, Darmstadt, Germany ^bUniversity of Santiago de Compostela, 15706 Santiago de Compostela, Spain ^cInstitut de Physique Nucléaire, 91406 Orsay Cedex, France

[1] Present address: CUPP-project, 86801 Pyhäsalmi, Finland[2] Present address: CEA/Saclay DM2S/SERMA/LENR, 91191 Gif/Yvette CEDEX, France

General motivation

Fundamental questions:

• how does the nuclear matter ,, look like "?, how does it behave ? ...

Astrophysical interest:

- evolution of the early universe
- supernovae explosions
- formation and stability of neutron stars
 - influenced by properties of the NM under extreme conditions (high T, P, ρ)

Properties of the NM:

- *static* (in)compressibility, phase transitions, excitation...
- dynamic viscosity, momentum dependence of the mean field ...

INPC Göteborg 2004

Static vs. dynamic properties

Static properties are studied in dynamical processes !!!

<u>Problem:</u> most of the experimental observables are not selective; => the interpretation is influenced by competing phenomena, !!! The results are very often ambiguous !!!

INPC Göteborg 2004

Present knowledge

<u>Recent analysis:</u>

(Danielewicz et al.)

Possible values of the nuclear incompressibility constrained by the experiments.

Only the most extreme models could be excluded by the experiment

INPC Göteborg 2004

Tools to investigate the nuclear matter

Standard tools: elliptic flow, sideward flow, transverse momentum, kaon production, ...

• L. Shi, P. Danielewicz, **R. Lacey, PRC 64 (2001)**

• M.V.Ricciardi et al. PRL 90(2003)212302

Spectator response: the spectator is not a passive witness, but rather a *victim* of a violent participants explosion!

What can we learn from the **spectator response**?

1) Change of the net momentum per nucleon (NM) depends on momentum dependence of the nuclear mean field (MF)

2) Dependence of NM change on stiffness of EOS is very small

Spectator response reflects the MD properties of the nuclear MF !!!

INPC Göteborg 2004

Experiment at the Fragment Separator

Once mass and charge are identified (A, Z are integer numbers) the velocity is calculated from $B\rho =>$ very precise determination!

$$\beta \gamma = \frac{e}{c \cdot m_0} \cdot \frac{A}{Z} \cdot B\rho \qquad \qquad \beta \cdot \gamma / \Delta \beta \cdot \gamma = B\rho / \Delta B\rho \approx 2000$$

INPC Göteborg 2004

Mean velocities of fragmentation residues

- Experimental evidence for the **postulated response of the spectators to the participant blast.**
- Precise velocity measurement of projectile fragments provides a novel access to investigate the MD of nuclear mean field

INPC Göteborg 2004

Experiment vs. simulations (op. I)

T.Enqvist *et al.* NPA658(1999)47

- BUU in qualitative agreement with the experiment
- Only MD MFs induce recovery of the fragment velocities with decreasing impact parameter
- Spectator response is a selective tool to access MD properties of MF.

INPC Göteborg 2004

Experiment vs. simulations (op. II)

INPC Göteborg 2004

Vladimir Henzl for CHARMS

The Outlook – dedicated experiments

<u>April 2004:</u> ¹⁹⁷Au+¹⁹⁷Au @ 1*A* GeV <u>August 2004:</u> ¹⁹⁷Au+¹⁹⁷Au @ 500 *A* MeV <u>2005:</u> ^{112,124}Sn+^{112,124}Sn @ 1 *A* GeV

INPC Göteborg 2004

Fragment Separator, GSI-Darmstadt op.II

1 A GeV ²³⁸U on titanium

Advantages of the FRS:

- unambiguous identification and precise longitudinal momenta
- full acceptance of most of the fragments

Disadvantages of the FRS:

- Only one fragment in one reaction measured, no correlations, no multiplicity
- Low acceptance for light and fission fragments (~10%)

Isotopic distributions

Isotopic distribution for elements produced in the **fragmentation of** *1*·*A* **GeV**²³⁸**U on titanium**. The fragmentation residues are represented by the symbol •, the residues from the side-peak by the symbols • (transmission from) and • (transmission from).

M.V.Ricciardi – PhD thesis

Brho selection by FRS

Constructing the velocity distribution

D. Henzlova – PhD. thesis

Velocity distributions of fragmentation residues

²³⁸U+Pb @ 1 AGeV

T.Enqvist *et al.* NPA658(1999)47

²³⁸U+Ti @ 1 AGeV

M.V.Ricciardi *et al.* PRL 90(2003)212302

<u>Basic</u> <u>characteristics:</u>

- width
- position
- shape

Information on reaction mechanism !!!

Velocity distributions

Vlad Henzl for CHARMS

CHARMS & *re-acceleration* (<u>C</u>ollaboration for <u>H</u>igh-<u>A</u>ccuracy Experiments on Nuclear <u>R</u>eaction <u>M</u>echanisms with the FR<u>S</u>)

V. Henzl¹, J. Benlliure², A. Boudard³, P.Danielewicz⁴, T. Enqvist⁵, M. Fernandez²,
A. Heinz⁶, D. Henzlova¹, A. Junghans⁷, B. Jurado⁸, A. Kelic¹, A. Kugler⁹, J. Pereira²,
M. V. Ricciardi¹, K.-H. Schmidt¹, C. Schmitt¹, L.Shi¹⁰, J. Taïeb³, C. Volant³, A. Wagner⁷,
V. Wagner⁹, O. Yordanov¹

 ¹GSI, Planckstr. 1, 64291, Darmstadt, Germany
 ²Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
 ³CEA/Saclay, 91191 Gif sur Yvette, France
 ⁴National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
 ⁵Department of Physics, University of Jyväskylä, 40014, Finland
 ⁶Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520, USA
 ⁷FZ Rossendorf, Bautzener Landstrasse 128, 01328, Dresden, Germany
 ⁸GANIL, 14076 Caen, France
 ⁹Nuclear Physics Institute ASCR, Řež, 25068, Czech Republic
 ¹⁰McGill University, Montreal, Canada

list-mode data provided by the ALADIN group