A new approach to the properties of hot and dense nuclear matter

<u>A. Kelić</u>¹, J. Benlliure², M. Bernas³, E. Casarejos², T. Enqvist¹, V. Henzl¹, D. Henzlova¹, J. Pereira², M. V. Ricciardi¹, K.-H. Schmidt¹, Ch. Schmitt¹, J. Taieb³, O. Yordanov¹

¹GSI - Darmstadt, ²Univ. Santiago de Compostela, Spain, ³IPNO, France

Astrophysical interest:

- Evolution of the early universe
- > Supernovae explosions
- Formation and stability of neutron stars

Governed by properties of the nuclear matter at extreme conditions (high T, P, ρ).

Heavy-ion collisions at relativistic energies

>"Standard" experiments: Detection of nucleons, produced particles, very light fragments in large-acceptance experiments.

Shi, Danielewicz, Lacey, Phys. Rev. C 64 (2001) 034601:

Explosion of the participant zone influences the spectator matter.

Spectator response to the participant blast

Theory

BUU calculations of Shi, Danielewicz, Lacey, Phys. Rev. C 64 (2001) 034601

 \triangleright A measure of the momentum dependence of the nuclear mean field.

Experiment at the FRS - GSI

Experimental results - e.g. ²³⁸U + Pb 1 A GeV

Spectator response to the participant blast

Experiment

M.V. Ricciardi et al., PRL 90 (2003) 212302

- The postulated response of the spectators to the participant blast has been established experimentally.
- Valuable basis for general verification of transport calculations.

Ongoing studies on the influence of a <u>beam energy</u> (energy deposited in the participant zone) and of a <u>neutron-to-proton ratio</u> on the strength of the spectator response to the participant blast.

Dedicated calculations.