Status of ABLA

- "Standard" version (e.g. incorporated in LAHET):
-n, p, a evaporation
$-\Gamma_{f}(\dagger) \rightarrow$ step function
- New version (still in the testing phase):
-improvements in particle widths and barriers for chargedparticles emission
-n, H, He, IMF emission
$-\Gamma_{f}(t) \rightarrow$ new analytical approach of B. Jurado

Particle emission widths

Weisskopf-Ewing formalism

$\Gamma_{v}\left(E_{i}\right)=\frac{2 \cdot s_{v}+1}{2 \cdot \pi \cdot \rho\left(E_{i}\right)} \cdot \frac{2 \cdot m_{v}}{\pi \cdot \hbar^{2}} \cdot \int_{0}^{E_{i}-S_{v}} \sigma_{c}\left(\varepsilon_{v}\right) \cdot \rho\left(E_{f}\right) \cdot\left(\varepsilon_{v}-B_{v}\right) \mathrm{d} E_{f}$

- Barriers \rightarrow
>based on the Bass model for the fusion of two spherical nuclei
- Inverse cross section \rightarrow
>existence of the Coulomb barrier (especially at low energy),
>energy-dependent cross section
$>$ tunnelling through the barrier (especially for light particles)

Inverse cross section

$$
\begin{gathered}
\sigma_{c}\left(\varepsilon_{v}\right)=\pi \cdot\left(R_{\text {geom }}+R \lambda\right)^{2} \cdot\left(1-\frac{\varepsilon_{v}}{B_{v}}\right) \\
R_{\text {geom }}=1.16 \cdot\left(A_{1}^{1 / /}+A_{2}^{1 / 2}\right) \quad \text { and } \quad R_{\lambda}=\sqrt{\frac{\hbar^{2}}{2 \cdot \mu \cdot E_{c m}}}
\end{gathered}
$$

- Tunnelling - by fitting the numerical results of a complete calculation with the Avishei formula for the transmission coefficients:

$$
\frac{\Gamma}{\Gamma_{\text {class }}}=10^{\left(4 \cdot 10^{-4} \cdot \exp \left(-4 \cdot 3 \cdot \log _{10}(x)\right)\right)} \quad x=\left(\frac{T}{(\hbar \omega)^{2}} \frac{1}{\mu^{1 / 4}}\right)
$$

Some results for ${ }^{208 \mathrm{~Pb}}+\mathrm{p}$ at 1 AGeV

- New Γ_{v}

Total mass distribution, $208 \mathrm{~Pb}+\mathrm{p}$ at 1 A GeV

IMF emission

-Moretto, Nucl.Phys. A247, p211:
Particle evaporation and fission \rightarrow two limits of one, same, process

IMF emission

-Evaporation-like approach
$>$ Integration over the available states in the IMF and the partner
$>$ No tunneling, no preformation included

$$
\begin{gathered}
\Gamma \approx \int_{0}^{E_{\text {Enat }}^{m a r}} \int_{0}^{E_{\text {pararner }}} \sigma_{\text {inv }} \frac{\rho_{\text {inff }}\left(E_{\text {inf }}\right) \cdot \rho_{\text {partner }}\left(E_{\text {partner }}\right)}{\rho_{C}(E)}(\varepsilon-B) d E_{\text {inf }} d E_{\text {partner }} \\
E=E_{\text {inf }}+E_{\text {partner }}+Q+\varepsilon-B
\end{gathered}
$$

IMF emission

- some results for ${ }^{238} \mathrm{U}+\mathrm{p}$ at 1 AGeV -

- Experimental data
- ABRABLA
M.V. Ricciardi et al, PRC accepted

