1 A GeV ²³⁸U on proton. Transition from fission to light evaporation residues. Data and calculation.

Paper: "Light Nuclides Produced in the Proton-Induced Spallation of ²³⁸U at 1 GeV" accepted in Phys. Rev. C

Authors:

M. V. Ricciardi, P. Armbruster, J. Benlliure, M. Bernas, A. Boudard,
S. Czajkowski, T. Enqvist, A. Kelic, S. Leray, R. Legrain, B. Mustapha,
J. Pereira, F. Rejmund, K.-H. Schmidt, C. Stephan, L. Tassan-Got,
C. Volant, O. Yordanov

PART I:

DATA ANALYSIS

THE EXPERIMENTAL SET-UP for LIGHT RESIDUES

$$\Delta E_{theory} \cong \frac{Z^2}{f(\upsilon)}$$

The MUSIC signals depended on two other additional factors:

- on the distance of the ions from the anode, i.e. the x_4 position, due to a recombination effect, leading to a loss of free electrons in the gas
- on the density of the gas in the IC, which was observed to vary with the time at which ΔE was measured

$$\Delta E_{measured} \cong \frac{Z^2}{f(\upsilon)} \cdot p(t) \cdot g(x_4)$$
$$Z^2 \propto \Delta E_{measured} \cdot \frac{f(\upsilon)}{p(t) \cdot g(x_4)}$$

(we assumed that the variables v, t, x_4 , are separable)

Correction for position dependence

$$\Delta E_{\text{corr}} = \frac{\Delta E_{\text{meas}}}{g(x_4)} = \frac{\Delta E_{\text{meas}}}{e^{\lambda \cdot x_4}} = \Delta E_{\text{meas}} \cdot e^{-\lambda \cdot x_4}$$

 $\lambda = 5 \cdot 10^{-4}$

The exponential dependence is due to the fact that the recombination of the electrons follows an *absorption law*, i.e. the number of electrons traversing a certain distance dx4 is reduced each time by the same percentage value.

Correction for pressure dependence

 $p(t)_{\Delta E1} = -4.44 + 0.0479 \cdot (filenumber) - 1.05 \cdot 10^{-4} \cdot (filenumber)^2$

$$\frac{A}{Z} = \frac{e}{u} \frac{(B\rho)_B}{\beta_{TOF} \gamma_{TOF} c}$$

The A/Z depends on two measured quantities:

- the magnetic rigidity in the second stage $(B\rho)_B$
- the velocity from TOF

The magnetic rigidity in the second stage $(B\rho)_B$

$$\Delta(B\rho)_{AB} = (B\rho)_{A} - (B\rho)_{B} \qquad (B\rho)_{B} = (B\rho)_{A0} \cdot \left(I + \frac{x_{2}}{D_{2}}\right) - \Delta(B\rho)_{AB} + \frac{x_{2}}{D_{2}} + \frac{x$$

 $x_2(mm) = b_2 - a_2 \cdot SCI_2(channel)$

The velocity from ToF measurement

$$\upsilon_{TOF} = \frac{s}{ToF} = \frac{s_0 \cdot (1 + c_\alpha \alpha_x) + \Delta s}{T_0 - ToF^*} \quad \text{with} \quad \begin{cases} \Delta s = d_1 x_2 + d_2 x_2^2 \\ ToF^* = \frac{ToF_L^* \cdot \alpha_L + ToF_R^* \cdot \alpha_R}{2} \end{cases}$$

1

The flight path, s, differs from s_0 for two reasons:

- $(1+c_{\alpha} \alpha_x) =$ fragments acquire a transversal momentum \rightarrow enter the 2nd section of FRS with different angles
- $\Delta S =$ fragments with different $B\rho$ enter the 2nd section of FRS with different x_2 -positions \rightarrow different paths along FRS

 $(1+c_{\alpha} \alpha_x) =$ fragments acquire a transversal momentum \rightarrow enter the 2nd section of FRS with different angles

 $\Delta S =$ fragments with different $B\rho$ enter the 2nd section of FRS with different x_2 -positions \rightarrow different paths along FRS

Linear + quadratic term

A check for determining the good parameters

wrong S_0

wrong α_{R}

wrong D_2

wrong a_2

wrong b₂

wrong c_{α}

wrong d_2

RESOLUTION AND IDENTIFICATION

DETERMINATION OF THE VELOCITY

Z=26

DETERMINATION OF THE VELOCITY

Too few settings for the dummy target!

VELOCITY SPECTRA FOR ALL RESIDUES

THE GLOBAL FIT AND THE INDIVIDUAL FIT

10⁶

10⁵

104

10³

10²

-4

-2

0

velocity [cm/ns]

2

counts

Z = 32 N = 51

Z = 8 N = 9

CROSS SECTIONS OF THE LIGHT RESIDUES

CROSS SECTIONS: MASS AND CHARGE DISTRIBUTIONS

TRANSITION FROM FISSION TO EVAPORATION

Mass distribution: the statistical transition-state model

VELOCITY OF THE RESIDUES

We can interpret the counts in the two wings as very asymmetric fission products in proton-induced reactions on ²³⁸U

TRANSITION FROM FISSION TO EVAPORATION

Velocity: from scission-point model towards asymmetric decay from undeformed nucleus

• Mean velocities in the frame of the fissioning nucleus

²³⁸U, ¹⁸⁵Au = compound nuclei

- scission-point model (deformed nuclei)
- • Nucleus-nucleus fusion approach (undeformed nuclei)

CONCLUSIONS: LIGHT NUCLIDES FROM 1 A.GeV ²³⁸U + p

The experimental data:

Production cross-sections for every isotope + velocity distributions

The data analysis:

•Details available in my PhD Thesis

The physics:

- •Yields and velocities of light nuclides from 1 A·GeV ²³⁸U + p indicate a transition from fission to evaporation
- •The experimental data could be successfully reproduced by a statistical model, combining a fission approach with the evaporation of intermediate-mass fragments
- No indications for a multifragmentation-type of decay have been observed

The paper:

•accepted in Phys. Rev. C.

OUR STATISTICAL MODEL

THE FISSION MODEL: THE FISSION PROBABILITIES

Fission decay width: transitionstate method of Bohr and Wheeler

level density of the compound nucleus

 $\Gamma_f^{BW} \approx T_f \frac{\rho_f (E - B_f)}{\rho_c(E)}$ level density of the transition states in the saddle-point configuration

The fission decay widths depend explicitly on time (dynamical evolution of the system along its path to fission)

(influence of nuclear viscosity)

B. Jurado, PhD thesis, Universidad de Santiago de Compostela, 2002.

THE FISSION MODEL: THE FISSION-FRAGMENT PROPERTIES (SEMIEMPIRICAL)

Fig. 1. Potential energy at the fission barrier for 238 U (upper part) and 208 Pb (lower part), as a function of mass asymmetry expressed by the neutron number of one of the preformed fragments.

THE VERY ASYMMETRIC FISSION: THE INTERMEDIATE-MASS FRAGMENT EMISSION

IMF decay width

 $\Gamma_{IMF} \approx \sigma_{inv} T_M^2 \frac{\rho_M (E - B_{IMF})}{\rho_C(E)}$ level density of level density of the the mother compound nucleus nucleus at the barrier V_v E_{init} E_{fin} $S_v + \varepsilon_v$ $S_v + B_v$ E_{max} \mathcal{E}_{v} B_{v} B. S. $E_{\text{Fermi}} = 0$ radius

The barrier is calculated using the fusion nuclear potential of Bass

ADDITIONAL EFFECTS

- 1 Thermal expansion of the nucleus
- 2 Pre-formation factor
- 3 Surface effects on the level density
- 4 Deformation of the nucleus

For light systems \rightarrow Thermal instabilities (break-up)

Partial widths Γ_n and Γ_p for emission of neutrons and protons.

$$\Gamma_n = \frac{2mR^2g}{^22\pi\rho(E-E_r^{gs})} \int_0^{E-B_n} \varepsilon\rho(E-B_n-\varepsilon) d\varepsilon$$

$$\Gamma_{p} = \frac{2mR^{2}g}{^{2}2\pi\rho(E - E_{r}^{gs})}$$
$$\sum_{\substack{E-B_{p}\\\varepsilon_{c}}}^{E-B_{p}} \varepsilon \left(1 - \frac{\varepsilon_{c}}{\varepsilon}\right)\rho(E - B_{p} - \varepsilon)d\varepsilon$$

(Approximation without considering tunneling.)

 Γ_p is reduced by the Coulomb barrier ε_c .

Modelling the Width in A and N/Z of Fission-Product Isotopic Distributions

Approximated parabolic potential

$$U(\eta) = C_{\eta} \cdot (\eta - \eta_o)^2$$

Statistical population:

$$Y(\eta) \propto \exp\left\{2\sqrt{a(U_0 - U(\eta))}\right\} \rightarrow$$

$$Y(\eta) \propto \exp\left\{-\frac{(\eta - \eta_0)^2}{2\sigma_\eta^2}\right\}$$
 with

$$2\sigma_{\eta}^2 = \frac{T}{C_{\eta}}$$

U = potential energy, $\eta =$ either A (mass split) or N/Z (polarisation), $C_{\eta} =$ stiffness of the potential, T = nuclear temperature.