KPII seminar February 2003

Determination of the freeze-out temperature in the fragmentation of relativistic ²³⁸U projectiles by means of the isospin thermometer

M. Valentina Ricciardi GSI

Karl-Heinz Schmidt, M. Valentina Ricciardi, Alexandre Botvina, Timo Enqvist, Nuclear Physics A 710 (2002) 157–179

GLOSSARY

Isospin Just an expression for N/Z

Freeze-out temperature

When "something" decouples from the hot source in the cooling process

Isospin thermometer

A specific thermometer based on the measurement of the N/Z

The liquid-gas phase transition in a nucleus

Exploring the nuclear-matter phase-diagram and identifying the different phases of nuclear matter is one of the main challenges of modern nuclear physics.

Up to now: Information gained with the observation of light (A<20) fragments

Temperature \rightarrow isotopic ratio

High-resolution magnetic spectrometer --> Mass identification is achievable for all residues

OUTLINE

- 1 Experiments: ${}^{238}U \rightarrow Pb$ at 1 A·GeV at FRS ${}^{238}U \rightarrow Ti$ at 1 A·GeV at FRS
- 2 Comparison of the experimental data with the EPAX prediction -> N/Z is sensitive to the temperature
- 3 Exploiting the new information: the isospin thermometer
- 4 Possible scenario of mid-peripheral highenergy nucleus-nucleus collisions

THE EXPERIMENT AT THE FRS AT GSI

1 A GeV ²³⁸U on titanium

velocity is calculated from Bp:

$$\mathcal{W} = B\rho \frac{Z \cdot e}{A \cdot m_0}$$
 very precise evaluation!

DISCRIMINATION OF FISSION EVENTS

From electromagnetic-induced fission to fragmentation of ²³⁸U

Fission from low and high excitation energies

• Fragmentation in high-energy nuclear collisions <u>Neutron excess reflects excitation energy induced.</u> <u>Evaporation leaves traces which can be exploited!</u>

EXPERIMENTAL RESULTS

EPAX: a *systematics* of isotopic cross sections in projectile fragmentation

(K. Sümmerer, B. Blank, Phys. Rev. C (2000) 034607)

EPAX is based on the hypothesis of *limiting fragmentation*

Mean N/Z of fragments (fission discharged)

— stability line

- EPAX, projectile = Fe
- 800 A·MeV Au + p F.Rejmund NPA 683 (2001)
- 414 A·MeV Fe + p W.R.Webber AJ 508 (1998)
- 1000 A·MeV U + Pb T. Enqvist NPA 658 (1999)
- 1000 A·MeV U + Ti this work

Why do some data agree with EPAX and some deviate?

SEQUENTIAL DECAY (EVAPORATION)

PRINCIPLE OF THE ISOSPIN THERMOMETER

Simplifying hypothesises:

- only n-evaporation
- 15 MeV consumed for every evaporated n
- the evaporation stops when $\langle N_{final} \rangle / Z = 1.25$

All pre-fragments start the evaporation cascade at a constant temperature!!!

COMPARISON WITH A THREE-STAGE MODEL

ABRASION / (BREAK-UP) / EVAPORATION

A SHARP CONSTANT TEMPERATURE?

Three-stage model SMM (arbitray normalised)

 no indications for important fluctuations in temperature

POSSIBLE SCENARIO OF MID-PERIPHERAL HIGH-ENERGY NUCLEUS-NUCLEUS COLLISIONS

CONCLUSIONS

★ Heavy residues produced in collisions of 238 U with titanium and lead at 1.A GeV are unexpectedly neutron-rich

★ The <N>/Z-ratio is an interesting quantity also for heavy masses produced in fragmentation

★ Isotopic distributions of residual elements from neutron-rich projectile are sensitive to a simultaneousemission phase

* The mean N/Z-ratio of the final elements can be used in combination with statistical-model codes in order to deduce the freeze-out temperature after break up ("isospin thermometer")

★ The average temperature of the break-up configuration at freeze out is $T \approx 5$ MeV

★ consequence: an equilibrated compound nucleus cannot exist above a limiting temperature of 5 MeV (EPAX is valid for T < 5MeV)