NEW SIGNATURES ON DISSIPATION FROM THE STUDY OF RELATIVISTIC HEAVY-ION COLLISIONS

Beatriz Jurado Apruzzese

August 2002

Contents

- Introduction and motivation
- New experimental approach to investigate dissipation
- Experimental set-up
- Experimental observables sensitive to dissipation
- Results
- Conclusions

Introduction

Deexcitation process of the nucleus:

- Statistical model
- Dynamical model
 - Transport theories

Two types of degrees of freedom

Collective intrinsic

 $\begin{aligned} & \text{Dissipation:} \\ & \beta = dE_{coll}/dt \left[1/(E^{eq}_{coll} - E_{coll}) \right] \\ & \beta \text{ rules the relaxation of the coll. degrees of freedom} \\ & \beta (T, q) \end{aligned}$

Fission is an appropriate tool for investigating dissipation

Current knowledge on dissipation

Fig. 13. Theoretical expectations for the dissipation coefficient b deduced from various models. The federace is the test for these models are Blo78 [44], Nix87 [3], Gri86 [45], Kra90 [46], Dav77 [47], Gro78 [48], Yam88 [49], Weg74 [50], Boi93 [51], Bush92 [52], Cha92 [36], and Nör81[53].

Experiment:

Standard reaction mechanisms to induce fission

Heavy-ion collisions at $E_{projectile} \approx 5-10 \text{ A MeV}$ (Fusion-Fission, Fast fission, Quasifission)

Dynamical models needed to describe these reactions

Antiproton annihilation and spallation reactions

Simplified theoretical description Difficulty to reach very high E* with large cross sections

Standard experimental observables

Latest experimental results

Temperature dependence ?? Fissility dependence ??

Peripheral heavy-ion collisions at relativistic energies

Inverse kinematics

Experimental set-up for fission studies in inverse kinematics

New observables: Partial fission cross sections & Widths of the charge distributions $Z_1 + Z_2 = 89$ (1 A GeV) + (()) $Y_{\text{fiss}}(Z_1 + Z_2)$ Counts Counts Z_2 $Z_1 + Z_2$ $\mathbf{B}_{\mathbf{f}}$ $\sigma_z^2 = T_{fiss}/C_z$ WIDTH [Charge Units] $\overline{E^*}_{initial}$ T_{fiss} $Z_1 + Z_2 = 92$ C Z_1 $Z_1 + Z_2$ Ē*_{initia}1

M.V. Ricciardi PhD. Thesis

Model of Grangé & Weidenmüller (1980) Kramers (1940)

Numerical solution of the FPE under specific initial conditions

Dependence of β on $\Gamma_{fiss}(\mathbf{t})$

$\sigma_{f}^{nucl 238}U(1 \land GeV) + Pb$

Experiment	2.16±0.14 b
Transition-state model	3.33 b
$\Gamma_{f}(t)$ step $\beta = 2.10^{21} \text{ s}^{-1}$	2.00 b
$\Gamma_{f}(t) \sim 1 - \exp(-t/\tau)$ $\beta = 4 \cdot 10^{21} \text{ s}^{-1}$	2.04 b
$\Gamma_{f}(t) \text{ FPE}$ $\beta = 2.10^{21} \text{ s}^{-1}$	2.09 b

The value of β depends on the description for $\Gamma_f(t)$

Influence of β on $\sigma_f(Z_1+Z_2)$ and Z-Width(Z_1+Z_2)

 ^{238}U (1 A GeV) + (CH₂)_n

The minimum at Z_{target} = 6 can only be reproduced if dissipation is included

Calculations:

For fission events produced ²³⁸U(1.A GeV)+Pb

Fission is mainly suppressed by dissipation at high E*

Fission completely suppressed at $E^* \ge 350 \text{ MeV}$

Deformation dependence

- Small deformation
- Large & small deformation

Conclusions

 Fission induced by peripheral heavy-ion collisions at relativistic energies, ideal conditions for the investigation of dissipation at small deformations

Determination of new observables

- Total nuclear fission cross sections for different targets
- -Partial fission cross sections
- -Partial widths of the charge distributions of fission fragments

•Realistic description for $\Gamma_f(t)$

• All observables described by a constant value of $\beta = 2 \cdot 10^{21} s^{-1} \longrightarrow \tau_f \approx (1.7 \pm 0.4) \cdot 10^{-21} s$ (critical damping)

-No indications for dependence on T or Z^2/A -Evidence for strong increase of β with deformation

Fragmentation background

.

Transient time

Excitation energy vs. Z

Outlook

