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Some physics goals far from stability

1. Ground-state properties (masses, moments)
2. Systematics of nuclear excitations (spectroscopy)

3. Nuclear structure at the extremes
(extreme N/Z ratio, extreme deformation)

4. The continuum structure of nuclei (halos)
S. Limits of bound nuclei (driplines, superheavy elements)

6. Astrophysics (reaction rates, waiting points,
the r-process path)



Methods for the production of secondary beams
(Some examples)
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Projectile fragmentation — GSI option

Special requirements on prim.-beam selection and energy.
Needs powerful equipment for in-flight separation.

Not restricted by radioactive decay and chemistry.
Provides high-energy radioactive beams.

Target fragmentation + ISOL
Post-acceleration decouples production and sec.-beam energy.

Deuteron - neutron conversion + target fragmentation + ISOL
Avoids heating by electronic energy loss in production target.




Requirements for a versatile in-flight
secondary-beam facility

Availability of all stable nuclei as primary beam.

Energy of primary beam from Coulomb barrier to
full stripping of uranium.

Full separation and identification of secondary
beams.

Powerful spectrometers and other analysis devices.



The facilities of GSI
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Installations for secondary beams:

UNILAC: Universal linear accelerator (E <20 A MeV).

SIS18: Heavy-ion synchrotron (E <1 ... 2 A GeV).

FRS: Magnetic spectrometer for separation of radioactive
beams of projectile-like residues.

ESR: Experimental storage ring.

CAVE B: Large-acceptance magnet ALADIN.



UNILAC

UNILAC ACCELERATOR AT GSI
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The universal linear accelerator for all stable
isotopes to energies above the Coulomb barrier
(energy per nucleon up to 20 MeV).

Acceleration in small steps in many HF cavities.

Strippers are inserted to increase ionic charge for
efficient acceleration.



Circumference 216 m
Maximum Bending Power 18 T* m

Magnets 24 Dipoles, 1.8 Tesla
12 Triplettlenses
12 Sextupolelenses

Magnet Power Dipoles 3.6 kA at 12 kV
Field Ramp 10 T/s

2 Cavities at 16 kV
Frequency Span 0.8 - 5.6 MHz

RF Acceleration

Vacuum operational 1079 Torr
bakable to 300° C

Beam Diagnosis 12 Position Monitors
2 Phase Probes
1 DC Transformer
1 fast, 1 slow

Pulse Transformer
1 Faraday Cup
Beam Scraper

Operation cycle:
Injection - acceleration - extraction

Only short injection time.

Only 1 cavity needed for acceleration.

Ramping of magnets synchronised to acceleration.

No stripping possible.

High energy - ionic charge far from equilibrium
-> needs very good vacuum.

Fast or slow extraction.
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Intensities of ion beams from SIS
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Fragment Separator

‘jr plastic scintillator: AFE, timing

i , time projection chamber: X, ¥
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production breakup
target target

A two-stage magnetic spectrometer with
e dispersive intermediate image plane and

e achromatic final image plane.
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Analogon of energy-loss spectrometer

(Only central trajectories are shown.)

Wavelength shifter (energy degrader)

Position in central plane — wavelength
(in FRS: p/q = A/7)

Position in exit plane = — wavelength shift
(in FRS: AE = Z°)
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The Fragment Separator
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. ToF AE
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Target S, Boly S,
Degrader

Projectile-like fragments:
Transmitted with ABp/ Bp = 3% and O,,,,=15 mr.

Identification in Z and 4 by magnetic deflection in
FRS, tracking, ToF andAE.

Bp=myAcByl(cZ)

AE o< 72 /1
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Isotopic identification
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Suppression of ionic charge states (above) and
isotopic identification (below).

(Data: **Pb (1 A GeV) + 'H, Timo Enqvist)
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Operation domain of the FRS
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Green area: Energy limits in the first half of the FRS.
Lower limit: 80% fully stripped in a Nb target stripper.
Upper limit: 50% secondary reactions in an Al degrader.

Dashed line: Energy in front of Be target (30% range of
projectile).

Conclusion: 1 A GeV is required for uranium.
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Nuclear-fission experiments at GSI

Ma jor advantages:

» Secondary beams give access
to several 100 short-lived isotopes

126
e Good Z resolution due to inverse kinematics
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Research topics:
 Shells at large deformation (e.g. B=0.6)

* Viscosity of nuclear matter

Nucl. Phys. A 665 (2000) 221
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Nuclear shells at large deformation

Experimental information on
deformation (B>0.3) obtained

Actual puzzles:

shells at large
from fission

Iransition from symmetric to asymmetric fission
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Future plans:

o Measuring Z, N and neutrons with R°B

-

-

Deformation of shells

Position of neutron and proton shells

Nucl. Phys. A 665 (2000) 221
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Experimental Storage Ring (ESR)
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Circumference 108 m
Maximum Bending Power 10 T m

& Dipoles, 1.6 Tesla
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Dipoles 3.7 kA at 1.6 kV
Field HBamp max. 1 T/s o~

¢ Cavities at 5 kV
Fregquency Span 0.8 - 5 MHz
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Position Monitors
DC Transformer
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Profite Harp
Faraday Cup
Beam Scraper
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Mass measurements by Schottky Scan in ESR
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T. Radon et al.
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