Prospects for the production of neutron-rich nuclei

(Karl-Heinz Schmidt, GSI Darmstadt)

. Arguments for an optimum beam energy
2. Nuclear reactions below the Fermi energy
3. Nuclear reactions above the Fermi energy
4. Fusion

5. Evaporation

6. Fission

7. Fragmentation

8. Two-step reactions?



Finding best conditions to go beyond the
present limits

Even nature did not reach the neutron drip line (r-process)

How to produce these neutron-rich nuclei in laboratory?



RHange and usable target thickness

*» Range increases strongly with energy

Range of protons in uranium
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» Usable target thickness limited
by reaction probability

Non-interacting protons in uranium
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General arguments for an "optimum" beam energy

Preac

P.../AE MVl P..../AE MVl P._._/AE [MeV~']

1.0 - 238),238) . , | 238),.238)
g 10° E
0_" 0.5+ s ;
5 -
0.0 _l_ll5 2 ! |‘5'|||: é 1 Iéll 1 ||5||||| é 1 ||5||||| é 1 Iéll
102 10° 10? 10°
E/A [MeV] E/A [MeV]

P...c = nuclear-reaction probability of projectile

AE = energy deposit in target per projectile

Red lines: target thickness = range of projectiles
typical for ISOL-type facilities.

Green lines: target thickness = 0.1 X range of projectiles
typical for in-flight facilities.

High reaction probabilities and low heat load
at E=1 A GeV.



lonic charge states

* Heavy reaction products

need to be relativistic

for in—flight separation
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Reaction mechanisms

E/A < Efppi

Low reaction probabilities

Reactions controlled by nuclear potential and
binding energies
Fusion, deep inelastic, transfer, fission

E/A > Efppi

High reaction probabilities

Two stages:
1. Collisions of individual nucleons
Target (resp. projectile) fragmentation

2. Deexcitation: nuclear potential and binding
energies are again important
Deexcitation of prefragments by
evaporation-fission competition



Fusion
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e Basic characteristics:
Curvature of stability valley due to Coulomb repulsion.
— Fusion products are neutron-deficient.
Nucleons of projectile and target add up.
— Suited to reach super-heavy nuclei.



Partial widths 7, and 7, for emission of
neutrons and protons.
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Evaporation Process
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Evaporation is like a diffusion process.
— Residues concentrate on an evaporation corridor.

Proton evaporation is hindered by the Coulomb barrier.
— The evaporation corridor is neutron-deficient.



Modelling the Width in A and N/Z

of Fission-Product Isotopic Distributions

Approximated parabolic potential
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Statistical population:
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U = potential energy,
1 = either A (mass split) or N/Z (polarisation),

C,, = stiffness of the potential,

T = nuclear temperature.



Fission
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e Basic characteristics:
Curvature of stability valley due to Coulomb repulsion.
— Fission products are neutron-rich.
Shell effects (°*Sn!) or fluctuations in polarisation.
— The only ways to reach even more neutron-rich.
The asymmetry term in the liquid drop is large.
— Polarisation is small.

o Excitation energy leads to opposite effects
Fluctuations in polarisation increase.
— Fission extends to more neutron-rich isotopes.
Excited fission fragments evaporate neutrons.
— Final fission products are less neutron-rich.



Fission of actinides

Fission induced by low-energy neutrons
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Fission products

Fission of actinides from low excitation energies
induced by neutrons, protons, electrons, photons.

Production of moderately neutron-rich isotopes of a
few elements.



Fission: Variation of Excitation Energy
(Calculations)

Fission of 2%°U with E* = 50 MeV
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Higher E* — larger fluctuations in A
— less neutron-rich



Exploring the limits of neutron-rich isotopes

by fragmentation-fission reactions
Production of Sn isotopes by fission
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Data from T. Enqvist et al., Nucl. Phys. A 658 (1999) 47,
C. Donzaud et al., Eur. Phys. J. A1 (1998) 407,
C. Engelmann et al., Z. Phys. A 352 (1995) 351.

Steep decrease of cross sections due to limitation of charge

polarisation in

fission.



Kinematic Properties of Potassium Produced
from ***U in Different Targets
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Projectile: **U, 1 A GeV
Target left: hydrogen (+ titanium window)
right: titanium

Velocity distributions of potassium isotopes
— Production in hydrogen target
from very asymmetric fission.
— Production in titanium target
from projectile fragmentation.



Production of Potassium in p + >**U
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Isotopic yields from 600 MeV protons on ~**U (ISOLDE)
and
fission-product yields from 1 A GeV ***U + hydrogen (GSI)

No absolute cross sections from ISOLDE yields.

The distributions fit together:
ISOLDE yields of light elements from fission!



Fragmentation
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Removal of nucleons in quasi-free nucleon-nucleon
collisions.

e Large fluctuations in N/Z.
e Large fluctuations in excitation energy.



Dedicated study of proton-removal channels

B7Au (0.95 A GeV) + Be
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Data from J. Benlliure et al., Nucl. Phys. A 660 (1999) 87.

Abrasion of protons only, no evaporation of neutrons
=> "Cold Fragmentation".
Promising results for producing neutron-rich nuclei.



Expected production cross sections by cold
fragmentation

[sotopic production cross sections, 28U + "Be
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The empirical systematics EPAX which has carefully been
adjusted to available experimental data has been used to
estimate isotopic production cross sections of extremely
neutron-rich isotopes by cold fragmentation. Since EPAX
does not consider fission, the prediction of neutron-
deficient isotopes is not realistic.

K. Siimmerer, B. Blank, Phys. Rev. C 61 (2000) 034607



Reaching extremely neutron-rich isotopes by
cold fragmentation
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Result of a model calculation® on cold fragmentation **U
(1 A GeV) + Be. Many new neutron-rich isotopes in reach,
but low cross sections!

» The model is described in J. Benlliure et al., Nucl. Phys.
A 660 (1999) 87



	Modelling the Width in A and N/Z

