Experiments with gold, lead and uranium ion beams and their technical and theoretical interest.

(Karl-Heinz Schmidt, GSI Darmstadt)

1.The Problem of Nuclear Waste

- 1.1 Nuclear Reactor
- **1.2** Transmutation and Incineration
- 1.3 The Hybrid System

2. Research at GSI

- 2.1 Benefit of Inverse Kinematics
- 2.2 Results

3. Theoretical Interest

- 3.1 Two-stage Nuclear Models
- **3.2 Excitation Energy of Prefragments**
- **3.3 Barriers for Charge-particle Evaporation**
- **3.4 Dissipation in Fission**

Energy release in fission

In the fission of heavy nuclei one gains ≈ 200 MeV.

The fission barrier stabilises the nucleus

Excitation over the barrier leads to fission

Primordial heavy nuclei

232Th: Z = 90, N = 142234U: Z = 92, N = 142, (0,0055%) 235U: Z = 92, N = 143, (0,72%) 238U: Z = 92, N = 146, (99.2745%)

Excitation by thermal neutrons

Only nuclei with odd neutron number fission after capture of thermal neutrons.

Nuclei with even neutron number are fertile. (By capture of thermal neutrons, a nucleus with odd neutron number is formed.)

The only natural nuclear fuel for conventional fission reactors is 235U.

Nuclear Reactor

Controlled chain reaction

"Fuel" 235U enriched from 0,72% to 3,5%.

Fission \rightarrow 2.2 to 3 neutrons, exactly one of those induces another fission (criticality = 1)

Control of reactor possible due to delayed neutrons.

Variation of criticality by rods, absorbing neutrons.

The Problem of Nuclear Waste

Which kind of waste?

Fission products

Plutonium — Dangerous waste or fuel?

Minor actinides

The time scale

Possible solutions

Deposition — safe?, accepted?

Transmutation and incineration by nuclear reactions —

"Cleaning up" in reasonable time?

Nuclear Reactions in the Reactor

Fission

Breeding

List of the Reaction Products

235U: Fuel (total reserves for \approx 200 years)

• Fission products:

Isotope	Life time	900 MW, 1 year
79Se	70000 years	0.1 kg
93Zr	1.5 million years	15.5kg
99Tc	210000 years	17.7 kg
107Pd	6.5 million years	4.4 kg
126Sn	10000 years	0.44 kg
129I	15.7 million years	3.9 kg
135Cs	2 million years	7.7 kg

239Pu: Fuel or dangerous waste?

Isotope	Life time	900 MW, 1 year
239Pu	24119 year	123.1 kg

Other actinides produced by breeding: Many not fissile by thermal neutrons

Balance: After a few years, the fuel is consumed. Problem: Increased neutron capture → poisoning

Transmutation of Radioactive Waste

By spallation neutrons?

High energy consumption!

By an hybrid reactor (ADS)?

A subcritical reactor with additional neutrons produced by 1 GeV protons.

The Hybrid System (ADS)

Principle:

- Slightly under-critical.
- Controllable by spallation neutrons, produced by 1 GeV protons.

Advantages:

Can be operated with $232Th \rightarrow 233U$.

232Th reserves sufficient for 21000 years.

Supports some "poisoning".

- Can transmute or incinerate nuclear waste.
- Is insensitive to some variation of the criticality during long operation.
- Long operation of fuel rods.

Problems:

Nuclear reactions up to 1 GeV must be known.

- Yield of spallation neutrons.
- <u>Production of radioactive nuclei by spallation.</u>
- Material damages due to irradiation.

The Research Program at GSI for Transmutation and Incineration of Radioactive Nuclear Waste

Precision measurements of isotopic yields

- **197Au (800 A MeV) + 1H**
- **208Pb (1 A GeV) + 1H**
- **208Pb (1 A GeV) + 2H**
- □ 208Pb (500 A MeV) + 1H
- □ 238U (1 A GeV) + 1H
- □ 238U (1 A GeV) + 2H
- □ 238U (1 A GeV) + 208Pb
- planned:
- **56Fe (1 A GeV) + 1H**

Development of nuclear-reaction models

International Collaborations

Experiments on residue production at GSI GSI Darmstadt, Germany Universidad Santiago de Compostela, Spain IPN Orsay, France CEA Saclay, France CEN Bordeaux-Gradignan, France

Network on nuclear data for ADS

UCL Louvain-la-Neuve, Belgium Subatech Nantes, France LPC Caen, France **RuG Groningen, Netherlands** UU Upsala, Sweden **ZSR Hannover, Germany PTB Braunschweig, Germany IPP Zürich, Switzerland PSI Zürich, Switzerland** FZJ Jülich, Germany **CEA Saclay, France CEA Bruyères-le-Châtel, France GSI Darmstadt, Germany** Universidad Santiago de Compostela, Spain Ulg Liège, Belgium **NRG Petten, Netherlands**

Why Inverse Kinematics?

Experiments with proton beams:

The products stick in the target. Identification by radioactive decay → Insensitive to short-lived nuclides

Experiments with heavy-ion beams:

The products leave the target with high velocity Identification in-flight

 \rightarrow Sensitive to all nuclides

The facilities of GSI

Heavy nuclei (¹⁹⁷Au, ²⁰⁸Pb, ²³⁸U) are accelerated and hit a liquid-hydrogen target. The projectile-like residues are identified in-flight with the fragment separator (FRS).

The Fragment Separator

Projectile-like fragments:

Transmitted with $\Delta B\rho/B\rho = 3\%$ and $\Theta_{max}=15$ mr.

Identification in Z and A by magnetic deflection in FRS, tracking, ToF and ΔE .

$$B\rho = m_0 A c \beta \gamma / (e Z)$$
$$\Delta E \propto Z^2 / v^2$$

Isotopic identification

(Data: ²⁰⁸Pb (1 A GeV) + ¹H, Timo Enqvist)

Fragment velocities

Reactions in H₂ target (above) and Ti windows (below).

Signature of the reaction mechanism: Fragmentation (single peak) and fission (two peaks).

(Data: ²⁰⁸Pb (1 A GeV) + ¹H, Timo Enqvist)

Proton-induced fragmentation of gold

¹⁹⁷Au + ¹H, 800AMeV

Data from F. Rejmund et al., submitted to Nucl. Phys. A

and J. Benlliure et al. submitted to Nucl. Phys. A

Full isotopic distribution mapped

Comparison with Previous Data

¹⁹⁷Au + ¹H (800 A MeV), fragmentation products

Isotope	σ(Michel et al.)/mb	σ(GSI)/mb
¹⁹³ Hg	7.47±1.2	4.38±0.66
¹⁹⁶ Au	66.0±7.0	58.4±5.5
¹⁹⁴ Au	29.0±2.8	31.2±2.9
¹⁹² Ir	2.91±0.230	3.8±0.6
¹⁹⁰ Ir	4.67±0.400	6.05±0.9
¹⁶⁸ Tm	0.283±0.0472	0.036 ± 0.005
¹⁴⁸ Eu	0.149±0.0141	0.08±0.013

¹⁹⁷Au + ¹H (800 A MeV), fission products

Isotope	σ(Michel et al.)/mb	σ(Kaufman et al)/bm	σ(GSI)/mb
102 Rh	0.80±0.13		0.53±0.08
⁹⁶ Tc	0.78 ± 0.06	0.72±0.09	0.58±0.08
⁸⁸ Y	2.45±0.19		1.36±0.20
⁸⁶ Rb	2.41±0.37		0.96±0.18
⁸⁴ Rb	2.01±0.16	1.44±0.25	1.54±0.25
⁸² Br	0.93±0.17		0.76±0.21
⁷⁴ As	1.37±0.11	1.38±0.13	1.07±0.10
⁶⁰ Co	0.75±0.09		0.51±0.05
⁵⁸ Co	0.96±0.09	0.41±0.06	0.27±0.03
⁵⁴ Mn	0.30 ± 0.05	0.44±0.04	0.31±0.06
⁴⁶ Sc	0.17±0.02	0.38±0.05	0.21±0.04

Previously measured in normal kinematics: 18 isotopic cross sections

GSI experiment in inverse kinematics: 749 isotopic cross sections

New Knowledge ¹⁹⁷Au (800 A MeV) + ¹H 100 Re Yb Au 10 qш Silb.&Tsao < 1 Model (GSI) σ 0.1 105 85 90 95 100 110 115 Neutron number

<u>Silberberg and Tsao</u>: Empirical systematics of previous knowledge.

Data points: New data on isotopic cross sections of gold, rhenium and ytterbium.

Data from F. Rejmund et al., submitted to Nucl. Phys. A

<u>GSI model</u>: New model description.

General characteristics of the model description

1. Nucleus-nucleus collision

 \rightarrow scattering cascade of quasi-free nucleons

- 1.1 Mass removed from the projectile
- 1.2 Excitation energy induced
- 1.3 Angular momentum

2. Thermalisation

 \rightarrow compound nucleus

3. Deexcitation

- \rightarrow boiling drop of nuclear matter
- 3.1 n, p, α , LCP evaporation
- 3.2 Fission

Critical features

- 1. Transition from cascade collisions to de-excitation. (The continuous process is artificially divided.)
- 2. Transmission coefficients for particle emission from hot exotic nuclei.

(Only cold stable nuclei are tested by fusion.)

3. Nuclear viscosity.

(Statistical model is not valid for fission.)

Excitation energy of the pre-fragments

Measured mass distribution (¹⁹⁷Au, 800 A MeV + ¹H) in comparison with different calculations.

The new data give a clear answer!

Viscosity of nuclear matter

Measured mass distribution (¹⁹⁷Au, 800 A MeV +¹H) in comparison with different calculations.

Strong influence of dissipation on fission!

Proton evaporation limits the production of neutron-deficient isotopes. New information to a longstanding controversy on the barrier height.

Data from F. Rejmund et al., submitted to Nucl. Phys. A

Calculated Cross Sections

Residues of ²⁰⁸Pb+x and ²³⁸U+x at 1 A GeV

Very different isotopic distributions for different projectile-target combinations.

Applications of improved nuclear-reaction models

Basis data for the design of hybrid reactors (ADS)

The many projectile-target combinations and reaction energies cannot be covered by experiment alone.

<u>Calculations for the design of next-generation</u> <u>secondary-beam facilities.</u>

Best operation parameters and the intensities of secondary beams can be estimated.

Experiments with gold, lead and uranium ion beams and their technical and theoretical interest.

(Karl-Heinz Schmidt, GSI Darmstadt)

Additional information

Publications:

"Research for the Incineration of Nuclear Waste" GSI-Nachrichten 2/99, also available in the WEB: <u>http://www-aix.gsi.de/~lantzsch/0299/PDF/Inzineration_e.pdf</u>

Articles on the treatment of nuclear waste: LA RECHERCHE, Nr. 301, Septembre 1997, p. 63 ff

"Hybrid nuclear reactors" H. Nifenecker, S. David, J. M. Loiseaux, A. Giorni Progress in Particle and Nuclear Physics 43 (1999) 683-827

Experiments on the production cross sections of heavy residues, performed at GSI: K.-H. Schmidt et al., Nucl. Phys. A 542 (1992) 699 K.-H. Schmidt et al., Phys. Lett. B 300 (1993) 313 M. Bernas et al., Phys. Lett. B 331 (1994) 19 M. Bernas et al., Phys. Lett. B 415 (1997) 111 C. Donzaud et al., Eur. Phys. J. A 1 (1998) 407 W. Schwab et al., Eur. Phys. J. A 2 (1998) 179 J. Benlliure et al., Eur. Phys. J. A 2 (1998) 193 M. de Jong et al., Nucl. Phys. A 628 (1998) 479 A. R. Junghans et al., Nucl. Phys. A 629 (1998) 635 C. Engelmann et al., Z. Phys. A 352 (1995) 351 J. Reinhold et al., Phys. Rev. C 58 (1998) 247 T. Enqvist et al., Nucl. Phys. A 658 (1999) 47 W. Wlazlo et al., submitted to Phys. Rev. Lett. F. Rejmund et al., submitted to Nucl. Phys. A J. Benlliure et al., submitted to Nucl. Phys. A

WEB dokumentation:

Research at GSI on the production cross sections of heavy residues: http://www-wnt.gsi.de/kschmidt/