New generation of measurements and model developments on nuclide production in spallation reactions

> Karl-Heinz Schmidt GSI Darmstadt

Spallation reaction:

Violent collision of nucleons with heavy nuclei, exploited e.g. for production of neutrons or exotic nuclei.

Interest for studying nuclide production in spallation:

- Spallation target in general
- ADS (transmutation of nuclear waste) HINDAS (FP5), EUROTRANS (FP6)
- EURISOL (ISOL-based secondary-beam facility) EURISOL_DS (FP6)
- Astrophysics (reactions of cosmic rays with matter)

Installations of GSI

Facility for basic and applied research with heavy ions.

Beams of all stable nuclides up to 1-2 *A* GeV.

Magnetic spectrometers, storage ring, ...

The fragment separator: nuclide identification in-flight

Fragment separator

Identification pattern ²³⁸U (1 A GeV) + ¹H M. V. Ricciardi

Experimental progress by inverse-kinematics method

Example: Fission of lead induced by ≈ 500 MeV protons

protons (553 MeV) on lead

²⁰⁸Pb (500 A MeV) on hydrogen

Common experimental effort of an international collaboration

CEA Saclay (France)

A. Boudard, M. Combet, J.-E. Ducret, B. Fernandez, E. Le Gentil, K. Kezzar, R. Legrain, S. Leray, S. Pietri, C. Villagrasa, C. Volant, W. Wlazlo

CEN Bordeaux-Gradignan (France)

S. Czajkowski, J.-P. Dufour, D. Karamanis, M. Pravikoff

IPN Orsay (France)

L. Audouin, C. O. Bacri, M. Bernas, L. Ferrant, A. Lafriak, B. Mustapha, P. Napolitani, F. Rejmund, C. Stephan, J. Taieb, Tassan-Got,

University of Santiago de Compostela (Spain)

J. Benlliure, E. Casarejos, M. Fernandez, T. Kurtukian, J. Pereira, D. Perez

GSI Darmstadt (Germany)

P. Armbruster, T. Aumann, A. Bacquias, T. Enqvist, L. Giot, A. Heinz, K. Helariutta, V. Henzl, D. Henzlova, H. Johansson, A. Junghans, B. Jurado, A. Kelic, A. Le Fevre, J. Lukasiak, S. Lukic, W. F. J. Müller, R. Pleskac, M. V. Ricciardi, K.-H. Schmidt, C. Schmitt, C. Schwarz, C. Sfienti, H. Simon, K. Sümmerer, W. Trautmann, F. Vives, O. Yordanov,

Others:

M. Böhmer, J. J. Connell, T. Fästermann, J. S. George, R. Gernhäuser, F. Hamache, R. Krücken, R. A. Mewaldt, M. Wiedenbeck, N. Yanasak, ,

34 Publications (see http://ww.gsi.de/charms/publica.htm)

Systematic survey on production of heavy nuclides

Full coverage of all residues Systematic overview on

- spallation-evaporation residues
- spallation-fission residues
- LCP and IMF production

projectile	target	energy in
		projectile frame
²³⁸ U	p, d	1 GeV, 2 GeV
²⁰⁸ Pb	p, d	0.5 to 2
¹⁹⁷ Au	р	0.8 GeV
¹³⁶ Xe	p, d	0.2 to 1 GeV
⁵⁶ Fe	p, d	0.3 to 1.5 GeV

Data available: www.gsi.de/charms/data.htm

Analysis partly still in progress, see following talks:

C. Paradela, E. Casarejos

Signatures of binary decay (double-humped distributions) and multifragmentation (single-humped distributions), producing the same nuclides with different weights.

Total fission cross sections

Full-acceptance detector set-up with active target.

(EURATOM fellowship FISA, R. Pleskac)

Identification of both fission fragments

²⁰⁸Pb (500 A MeV) + ¹H

Results on total fission cross sections

reaction	full- acceptance set up	FRS	Prokofiev [1]	Kotov et al. [2]
²⁰⁸ Pb+ ¹ H 500 MeV	146±7	232±33 [3]	112	
²⁰⁸ Pb+ ² H 1000 MeV	203±9			
²³⁸ U+ ¹ H 545 MeV	1490±100		1360	1491±78
²³⁸ U+ ¹ H 935 MeV	1550±100	1530±200 [4]	1270	1489±64

(For the values given in green, the energies deviate slightly.)

¹ A. V. Prokofiev, Nucl. Instrum. Methods **A 463**, 557 (2001).

² A. A. Kotov et al., Phys. Rev. **C 74**, 034605 (2006).

³ B. Fernandez et al., Nucl. Phys. **A 747**, 227 (2005).

⁴ M. Bernas et al., Nucl. Phys. **A 725**, 213 (2003).

SPALADIN: LCP in coincidence with heavy residues

- High angular acceptance
- Low mass resolution

Aim: separate cascade from evaporation phase, dedicated talk by J. E. Ducret

Development of the ABRABLA code (ABRA + ABLA)

Not all relevant targets (resp. projectiles) can be measured over the whole energy range. The development of realistic models is necessary.

The ABLA code (\rightarrow ABLA07) has been improved on the following subjects:

• Extension of evaporation to heavier masses

Coulomb barriers from Bass nuclear potential (no adjustable parameter). Gap between LCPs and fission is filled. (Compare GEMINI, GEM)

• Multifragmentation

Simultaneous break-up if E*/A>3MeV, sizes of fragments follow power law. (Compare SMM)

• Fission

Improvements in fission dynamics and structural effects.

A. Kelic, M. V. Ricciardi

Benchmark of ABRABLA07: Spallation with 1 GeV protons

Experiment (FRS)

ABRABLA07

Benchmark of ABLA07: Threshold behaviour of IMFs

Production of 24 Na in the reaction 209 Bi + 1 H.

Experiment: Direct-kinematics experiment (Titarenko et al. NIM A562 (2006) 801) Improvement of IMF production in ABLA07

by binary decay and multifragmentation.

The FAIR project of GSI

FAIR is dedicated to **research with ion and antiproton beams** on the **properties of matter in the dimensions of atoms, nuclei and sub-nuclear particles**.

Improvements for nuclear-data measurements:

- Primary beams with higher intensities and higher energies.
- Extended variety of secondary beams.
- Powerful magnetic spectrometers, storage rings, colliders.

Estimated intensities of secondary beams at FAIR

Excellent conditions for experiments on properties of exotic nuclei.

R³B, part of the FAIR project of GSI (Reaction studies with Relativistic Radioactive Beams)

Experimental complex with large-acceptance and high-resolution magnetic spectrometers.

ELISe: Electron-lon collider, part of the FAIR project of GSI

Equipped with

- e-spectrometer
- fission detection system

 \rightarrow First time that fissionfragment yields, resolved in Z and A, will be measured for specific systems (stable and radioactive) and well-defined excitation energies!

Excitation by tagged photons (inelastic electron scattering).

Summary

In a common effort, a French-Spanish-German collaboration is producing a set of high-quality data on spallation reactions at the GSI facility using

the FRS as a high-resolution spectrometer, a large-acceptance fission set-up and the large-acceptance SPALADIN set-up.

Extensive set of high-quality data used as a basis for improvements of codes: INCL4.4 – advanced description of the collision stage (Cugnon, Boudard). ABLA07 – consistent description of all deexcitation processes of a thermalized system (fission, evaporation of nucleons / LCPs / IMFs, multifragmentation).

The new accelerator facility FAIR will be an outstanding instrument for research on the properties of matter in the dimensions of atoms, nuclei and sub-nuclear particles with ion and antiproton beams.

It will also provide excellent conditions for research on nuclear data.