Systematic study of spallation reactions in inverse kinematics at the FRS

M. Valentina Ricciardi GSI

A campaign of measurements and studies started at GSI in 1996 in collaboration with other institutes:

> Universidad de Santiago de Compostela, Spain IPN Orsay, France CEA Saclay, France CENBG Bordeaux, France

Motivation

Original motivation: ADS

Need for precise evaluation of production cross sections and velocity for all nuclei produced in a large range of excitation energies in many materials

Strategy: limited number of experiments for selected nuclei

Better insight in the reaction mechanisms: fission, fragmentation, multifragmentation, phase-transitions (superfluid-liquid, liquid-gas)

high predictive power of the nuclear-reaction codes (INCL+ABLA, ABRABLA)

Other applications

Radioactive-beam production, neutron sources, astrophysics, space technologies, biology and medicine

Measurement in inverse kinematics at FRS

ToF $\Rightarrow \beta \gamma$ $x_1, x_2 \Rightarrow B\rho$ $\Delta E \Rightarrow Z$

$$\frac{A}{Z} = \frac{e}{m_0 c} \cdot \frac{B\rho}{\beta \cdot \gamma}$$

Resolution:
-
$$\Delta(\beta\gamma)/\beta\gamma \approx 5.10^{-4}$$

- $\Delta Z \approx 0.4$
- $\Delta A / A \approx 2.5.10^{-3}$

Nuclide identification

production cross sections for all nuclei

²³⁸U + ¹H at 1 A GeV

Ricciardi et al, Phys. Rev. C73 (2006) 014607

Velocity distributions

Limited angular acceptance of FRS together with different kinematical properties of fission and fragmentation residues \Rightarrow reaction mechanism

For each nucleus: production cross section, velocity and production mechanism

Performed experiments

Projectile	Target	Energy [A GeV]
⁵⁶ Fe	^{1,2} H , Ti	0.3, 0.5, 0.75, 1, 1.5
^{136,124} Xe	^{1,2} H, Ti	0.2, 0.5, 1
¹⁹⁷ Au	¹ H , Ti	0.8
²⁰⁸ Pb	^{1,2} H, Ti	0.5, 1
²³⁸ U	^{1,2} H, Ti	1

Cross sections and velocity distributions for more than **10,000 nuclei** measured!

Data accuracy:

Statistic: below 3%

Systematic: 9 - 15 %

Data available at: www.gsi.de/charms/data.htm

Example: 1 A GeV ²³⁸U on ¹H

Measured velocities

Other examples

Experimental progress by inverse kinematics

Example: Fission of lead induced by \approx 500 MeV protons

Protons (553 MeV) on lead

²⁰⁸Pb (500 A MeV) on hydrogen

New insight in physics

The following activities arose from the study of experimental data:

- fission: shell effects and pairing correlations, viscosity of nuclear matter, fission barriers
- statistical evaporation from a compound nucleus
- nuclear thermometry
- kinematical properties of the spectator, EOS
- multifragmentation, liquid-gas phase transition
- superfluid-liquid phase transition (nuclear structure, even-odd)
- charge-pickup reactions

More information at http://www.gsi.de/charms/Publications/publica.htm

Model calculations (high energy)

Model calculations (low energy)

Conclusions

A big step forward in the spallation studies:

- A large amount of experimental data:

precise cross sections for about 10000 nuclides precise velocities and information on reaction mechanism

- Valuable insight on many different fields of physics
- Development of simulation codes with high predictive power

Future plans: New generation of experiments at R3B at FAIR

To know more: www.gsi.de/charms

Collaboration

<u>GSI</u>

P. Armbruster, A. Bacquias, T. Enqvist, L. Giot, K. Helariutta, V. Henzl,
D. Henzlova, B. Jurado, A. Kelić, P. Nadtochy, R. Pleskač, M. V. Ricciardi,
K.-H. Schmidt, C. Schmitt, F. Vives, O. Yordanov

IPN-Paris

L. Audouin, M. Bernas, B. Mustapha, P. Napolitani, F. Rejmund, C. Stéphan, J. Taïeb, L. Tassan-Got

CEA-Saclay

A. Boudard, L. Donadille, J.-E. Ducret, B. Fernandez, R. Legran, S. Leray, C. Villagrasa, C. Volant, W. Wlazło

University Santiago de Compostela J. Benlliure, E. Casarejos, M. Fernandez, J. Pereira

CENBG-Bordeaux

S. Czajkowski, M. Pravikoff

Our nuclear-reaction code based on the statistical model sequential evaporation proton 1 GeV excited compound nucleus or ensemble of compound 238U nuclei fission ABLA Ti

Limited momentum acceptance

Overlap of measurements with different magnetic-filed settings.

Future: R3B @ FAIR

Exclusive experiments and high resolution!

Mass distribution in ⁵⁶Fe+p at 1 A GeV

exp - C. Villagrasa et al., P. Napolitani et al.
 INCL4 + ABLA117

EVEN-ODD STRUCTURE IN LOW-ENERGY FISSION

Results from e.m.-induced fission of 70 different secondary projectiles (Steinhäuser et al., Nuc. Phys.A 634 (1998) 89)

Structural properties survive at low energy (SUPERFLUIDITY)

RESULT FOR 1 GeV p on ²³⁸U

