

Kinematical properties of spectator fragments in heavy-ion collisions at relativistic energies -Antoine Bacquias-

Collaboration for High-Accuracy experiments on nuclear Reaction Mechanisms with a magnetic Spectrometer = CHARMS <u>http://www-w2k.gsi.de/charms/index.htm</u>

Antoine Bacquias

PhD Seminar

present members: A. Bacquias, V. Föhr, A. Kelic, M.V. Ricciardi, K.-H. Schmidt

Contents

• Introduction

o Why study the properties of nuclear matter? o Our tool: collisions of heavy ions

- Experimental set-up & method
- Experimental results

o How data look like – example of ¹³⁶Xe+Pt at 1 A GeV o Understanding of longitudinal velocity spectra (shapes) o Mean longitudinal velocity o Dispersion of longitudinal momentum

Antoine Bacquias

Why study the properties of nuclear matter?

Different aspects:

- static
- dynamic

 \rightarrow fundamental interests (Equation of State) but also applications in other domains

PhD Seminar

Neutron stars

PhD Seminar

Crab Nebula X-ray emission seen by CHANDRA

radius limit depends on compressibility of nuclear matter see for example discussion in

Danielewicz et al., *Determination of EoS of dense matter*, Science (2002)

Technical applications

PhD Seminar

Tests on nuclear matter in labs: collisions needed case of relativistic energies

Beam energy around 1000 A MeV Fermi energy inside the nuclei around 30 MeV

→ Fermi motion inside colliding nuclei is slow vs. beam velocity (distributions of rapidity do not overlap)

 \rightarrow no exchange of nucleons between projectile & target

Tests on nuclear matter in labs: collisions needed case of relativistic energies

Nuclei consist of nucleons bound by nuclear force Potential well around 40 MeV deep

PhD Seminar

 \rightarrow Nuclear force negligible compared to the beam energy

Collision between bags of free nucleons at rest in their bag This constitutes the basis of the original JNC model

Various scenarii depending on the centrality

6-51

PhD Seminar

Various studies on nuclear matter

fire ball (ex: FOPI):

- hot and compressed matter
- particle production
- collective effects (flow)

spectators:

- excited but not compressed
- phase transition of nuclear matter (ALADIN)
- reaction mechanisms & kinematics (this work)

PhD Seminar

spectators are excited products of the collision

removed nucleons:

- well defined in space
- sampled over the energy levels

PhD Seminar

Kinematical studies on spectator matter

spectators <u>almost</u> keep the original beam velocity

more detailed descriptions of interaction and reaction mechanisms are needed: intuitively, friction for example

high resolution measurement of the kinematics \rightarrow not a full-acceptance set-up (too costly)

PhD Seminar

Where is the FRagment Separator in GSJ?

PhD Seminar

FRS set-up

Antoine Bacquias

6-5-1

Procedure

1.Identification

scintillators : - position at SL and S4
- time of flight
MUSJC : energy loss
$$\rightarrow Z$$

 $\rightarrow B\rho_{pos}$
 $\rightarrow B\rho_{pos}$
 $\rightarrow \beta\gamma_{TOF}$
 $\frac{A}{Z} = \frac{e}{c \cdot m_0} \cdot \frac{B\rho_{pos}}{\beta\gamma_{TOF}}$

2. High-precision velocities

Exact values for A and Z (integers)
Precise calculation of the velocity
$$\Delta\beta\gamma/\beta\gamma \approx 5 \cdot 10^{-4}$$

$$\beta\gamma = \frac{e}{c \cdot m_0} \cdot \frac{Z}{A} \cdot B\rho$$

PhD Seminar

Identification pattern

PhD Seminar

Shapes of longitudinal velocity spectra

Shapes of longitudinal velocity spectra

Antoine Bacquias

complex structures: with spallation experiments, more obvious coming from two effects:

- central component (fragmentation)
 Coulomb shell (binary decay)

Shapes of longitudinal velocity spectra

similar than with lead target

acceptance cut

Napolitani et al., arXiv_nucl-ex/0706.0646

Antoine Bacquias

¹³⁶Xe+p at 1 A GeV

Mean longitudinal velocity

PhD Seminar

Ricciardi et al., PRL 90 (2003) Henzl, PhD thesis

Mean velocity

PhD Seminar

Understand the slowing down → compare with models friction phenomenon related to inmedium N-N cross-sections?

get rid of the modelization of evaporation velocities as a function of the impact parameter

connection established between observed cross-sections and predictions of glauber theory for heavy residues

Dispersion

Antoine Bacquias

6-510

considerations true for longitudinal and transversal components of projectile-like and target-like spectators

Goldhaber model partition of fermions

$$\sigma_{P_{\parallel}}^{2} = \frac{p_{F}^{2}}{5} \frac{A(A_{p} - A)}{(A_{p} - 1)}$$

Phys. Lett. 53B (1974)

only one step (abrasion)

Momentum dispersion

¹³⁶Xe + Pb at 1 A*GeV

PhD Seminar

Morrissey fit function

not going back to zero!

Phys. Rev. C39 (1989)

Antoine Bacquias

not based on a model

Momentum dispersion

Antoine Bacquias

Need for a new model with more physics

PhD Seminar

taking excitation into account • fragmentation (abrasion) • evaporation (sequential emission) • multifragmentation (if reached)

also Coulomb repulsion

C

Evolution of excitation energy

PhD Seminar

To build an analytical formula, need of other assumptions

Mean evaporation: -15 MeV per evaporated nucleon

- Observed fragment mass: above A_{lim}, it undergone abrasion and evaporation below A_{lim}, it is a product of multifragmentation

PhD Seminar

Antoine Bacquias

No Intermediate Mass Fragment emission

Momentum dispersion

Ingredients of the new model

- Fermi motion inside the projectile (Goldhaber style) → for both abrasion and break-up stages
- recoil momentum from evaporated particles
 → fit parameter or from Coulomb barriers
- Coulomb repulsion at break-up → upper estimation (biggest mother nucleus...)

PhD Seminar

good agreement for several systems most of the mass range covered

small discrepancies due to

- overestimation of charge repulsion
 no expansion of the system at break-up (system diluted, lower Fermi momentum)

Antoine Bacquias

gold data: V. Henzl, PhD thesis krypton data: M. Weber, PhD thesis

to summarize

Longitudinal velocity distributions of spectator fragments:

- 1st moment variations linked with EoS and N-N x-sections
- 2nd moment reflects the different production steps

"spectators" are not so innocent: their kinematics show features of the reaction mechanisms kinematical studies help improving simulations (ABRABLA)

PhD Seminar