Projectile Fragmentation at the Fragment Separator

Andreas Heinz Wright Nuclear Structure Laboratory, Yale University

for the CHARMS Collaboration

Symposium on 30 Years of Projectile Fragmentation, ACS meeting, San Francisco, September 10-11, 2006

CHARMS

<u>Collaboration for High-Accuracy Experiments on Nuclear Reaction</u> <u>Mechanisms with Magnetic Spectrometers</u>

P. Armbruster¹, A. Bacquias¹, L. Giot¹, V. Henzl^{1,12}, D. Henzlova^{1,12}, A. Kelić¹, S. Lukić¹, R. Pleskač¹, M.V. Ricciardi¹, K.-H. Schmidt¹, O. Yordanov¹, J. Benlliure², J. Pereira^{2,12}, E. Casarejos², M. Fernandez², T. Kurtukian², C.-O. Bacri³, M. Bernas³, L. Tassan-Got³, L. Audouin³, C. Štéphan³, A. Boudard⁴, S. Leray⁴, C. Volant⁴, C. Villagrasa⁴, B. Fernandez⁴, J.-E. Ducret⁴, J. Taïeb⁵, C. Schmitt⁶, B. Jurado⁷, F. Reymund⁸, P. Napolitani⁸, D. Boilley⁸, A. Junghans⁹, A. Wagner⁹, A. Kugler¹⁰, V. Wagner¹⁰, A. Krasa¹⁰, A. Heinz¹¹, P. Danielewicz¹², L. Shi¹², T. Enqvist¹³, K. Helariutta¹⁴, A. Ignatyuk¹⁵, A. Botvina¹⁶

> ¹GSI, Darmstadt, Germany ²Univ. Santiago de Compostela, Sant. de Compostela, Spain ³IPN Orsay, Orsay, France ⁴DAPNIA/SPhN, CEA Saclay, Gif sur Yvette, France ⁵DEN/DMS2S/SERMA/LENR, CEA Saclay, Gif sur Yvette, France ⁶IPNL, Universite Lyon, Groupe Materie Nucleaire 4, Villeurbanne, France ⁷CENBG, Bordeau-Gradignan, France ⁸GANIL, Caen France ⁹Forschungszentrum Rossendorf, Dresden, Germany ¹⁰Nuclear Physics Institute, Rez, Czech Republic ¹¹Wright Nuclear Structure Laboratory, Yale University, New Haven, USA ¹²NSCL and Physics and Astronomy Department, Michigan State University, East Lansing, USA ¹³CUPP Project, Pyhasalmi, Finland ¹⁴Univeristy of Helsinki, Helsinki, Finland ¹⁵IPPE Obninsk, Russia ¹⁶Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia

Topics

Basic research:

- □ Momentum dependence of the nuclear mean field (Talk of V. Henzl)
- Thermal instabilities of nuclear matter (Talk of D. Henzlova)
- Dissipation in Nuclear Matter
- Very asymmetric fission
- Structure effects in fission and fragmentation
- Nuclide production in fragmentation and fission (Talk of J. Benlliure)

<u>Applications</u>:

- Nuclear astrophysics
- Spin, alignment and polarisation in fragmentation
- Transmutation of nuclear waste
- Nuclear safety
- Production of secondary beams (RIA, FAIR)

The Heavy-Ion Synchrotron at GSI

The FRagment Separator FRS

²³⁸U+Ti at 1 A GeV

M.V. Ricciardi, PhD thesis

Two "natural" observables:

- Momentum distributions
- Cross sections

Projectile Fragmentation

Two different time scales for abrasion and ablation \rightarrow (at least) a two-step process!

- Abrasion of nucleons in a peripheral collision produces excited CN (prefragment).
 - high <E*> ≈ 27 MeV per abraded nucleon
- **De-excitation through particle evaporation (n,p,\alpha) or fission**
- (relatively) low angular momenta (listen tomorrow to Z. Podolyak)

Momentum Distributions

Nucleon excitation in projectile fragmentation

¹H(²⁰⁸Pb,²⁰⁸Bi)x at 1 A GeV ²H(²⁰⁸Pb,²⁰⁸Bi)x at 1 A GeV Velocity of ²⁰⁸Bi in the frame of the ²⁰⁸Pb projectile.

A. Kelić et al., PRC 70, 064608 (2004)

Two components can be distinguished:

- Quasi-elastic scattering (p replaces n in ²⁰⁸Pb)
- $\Delta(1232)$ excitation (e.g. $n \rightarrow \Delta^0 \rightarrow p + \pi^-$)

Probability for Δ excitation and energy in the nuclear medium can be deduced.

Measured Nuclide Production in Fragmentation and In-flight Fission

Excellent basis for model development

Data available at: http://www-w2k.gsi.de/charms/data.htm

Experiment

Charge distribution

Two Reaction Mechanisms

Plastic: only nuclear-induced fission

Pb: nuclear and electromagnetic-induced fission

Nuclear: $Z_{CN}^{|} = Z_1 + Z_2$

Electromagnetic: $Z_{CN} = Z_1 + Z_2$

 \rightarrow trigger for low excitation energies!

Experimental Information on Fission at low E*

Transition from Symmetric to Asymmetric Fission

132

133

134

135

136

137

Neutron number

138

139

140

141

142

Data resulted in:

o improved models for yield calculations

o better understanding of low-energy fission: evolution of fission channels, influence of pairing, ...

GSI code ABLA - Examples low-energy reactions

Excitation function and A- and Z- distributions:

Mass number

Proton number

Dissipation and Nuclide Production

J. Taïeb et al.

Dissipation and Nuclear Fission

Dissipation and the Saddle Point Temperature

Charge Width as a Thermometer

First Results

²³⁸U (*a*) 1 A GeV on ⁹Be

Model description fails for deformed projectiles

 \rightarrow influence of "initial" deformation on dissipation in nuclear fission

Fine structure in residue yields after violent nuclear collisions

1 A GeV ²³⁸U on titanium

Observed fine structure in fragmentation

Caution when interpreting nuclide yields with thermodynamic approaches without nuclear structure!

M.V. Ricciardi et al., NPA 733, 299 (2004)

GSI code ABLA – Examples for high-energy reactions

238U (1 A GeV)+p 100 d(mb) ADDITION COM 10 ABLA o Exp 20 100 120 140 160 0 40 60 80 Mass number

The Future: R³B

Measure:

- Charge <u>AND</u> Mass of projectile and fission fragments
- > Neutrons
- ➢ Gammas
- Cross sections

Exclusive experiments AND high resolution

Future (Part II): Electron-Ion scattering in a Storage Ring (eA Collider) ELISe

- 125-500 MeV electrons
 200-740 MeV/u RIBs
- achievable luminosity: 10²⁵-10²⁹ cm⁻²s⁻¹ depending on ion species
- spectrometer setup at the interaction zone
- detection system for RI in the arcs of the NESR (see EXL)

Conclusions

- A lot of progress in the understanding of projectile fragmentation.
- Heavy beams and high resolution spectrometers are excellent tools.
- Don't forget the influence of nuclear structure and nucleonic excitions.
- A wealth of new data from projectile fragmentation, spallation, in-flight fission and fission of secondary beams allowed for the development of realistic models with predictive power.
- Applications in accelerator driven systems, nuclear astrophysics,
 ...
- The future looks bright!