The fission rate in multi-dimensional Langevin calculations

P.N. Nadtochy GSI, Darmstadt

Motivation

Understanding of collective properties of nuclei

Large difference in the predictions of dissipation properties in different theoretical models

Experimental data on nuclear dissipation have often been interpreted using one-dimensional model calculations of the Langevin or Fokker-Planck type.

Investigate the influence of the dimensionality of the deformation space on the fission process in Langevin calculations.

Theoretical description of fission

stochastic approach

collective variables (shape of the nucleus) internal degrees of freedom ("heat bath")

Langevin equations

Langevin equations describe time evolution of the collective variables like the evolution of Brownian particle that interacts stochastically with a "heat bath".

The stochastic approach

 E_{coll} - the energy connected with collective degrees of freedom

 E_{int} - the energy connected with internal degrees of freedom

 E_{evap} - the energy carried away by the evaporated particles

The (c,h,a)-parameterization

$$\rho_s^2(z) = \begin{cases} (c^2 - z^2) (A_s + Bz^2/c^2 + \alpha z/c), & \text{if} \quad B \ge 0; \\ (c^2 - z^2) (A_s + \alpha z/c) \exp(Bcz^2), & \text{if} \quad B < 0, \end{cases}$$

$$B = 2h + \frac{c-1}{2}.$$

$$A_s = \begin{cases} c^{-3} - \frac{B}{5}, & \text{if } B \ge 0; \\ -\frac{4}{3} \frac{B}{\exp(Bc^3) + \left(1 + \frac{1}{2Bc^3}\right)\sqrt{-\pi Bc^3} \text{erf}(\sqrt{-Bc^3})}, & \text{if } B < 0. \end{cases}$$

The Langevin equations

$$\dot{q_i} = \mu_{ij} p_j,$$

$$\dot{p_i} = -\frac{1}{2} p_i p_k \frac{\partial \mu_{jk}}{\partial q_i} - \frac{\partial F}{\partial q_i} - \gamma_{ij} \mu_{jk} p_k + \theta_{ij} \xi_j (t)$$

\mathbf{q} - collective coordinate \mathbf{p} - conjugate momentum

$$\begin{split} \mathbf{m}_{ij}(\|\mu_{ij}\| &= \|\mathbf{m}_{ij}\|^{-1}) \text{ - inertia tensor} \\ F(\mathbf{q}) &= V(\mathbf{q}) - a(\mathbf{q})T^2 \text{ - Helmholtz free energy} \\ a(\mathbf{q}) \text{ - level density } T \text{ - temperature} \\ V \text{ - potential energy } \gamma_{ij} \text{ - friction tensor} \\ \theta_{ij}\xi_j \text{ - random force } \xi_j \text{ - random variable} \end{split}$$

The collective coordinates

The collective coordinates

The potential energy for the ²⁴⁸Cf.

The solid curve – saddle point configurations.

The dashed curve – fission valley.

Calculations:

- 1. One dimensional (bottom of fission valley) h=a=0
- 2. Two dimensional (symmetrical fission) $q_3=0$, $q=(q_1,q_2)$
- 3. Three dimensional $q=(q_1,q_2,q_3)$.

The friction parameter

- One-body dissipation ("wall" and "wall-plus-window" formulas)
- Two-body dissipation with the two-body friction constant $v_0 = 2 \ge 10^{-23} \text{ MeV s fm}^{-3}$

Results of calculations

1-, 2-, and 3-dimensional

calculations for

 248 Cf at E* = 30 MeV and E* = 150 MeV;

 213 At at E* = 190 MeV

Fission rate: R(t) = -1/N(t) dN(t)/dt

N(t) - the number of Langevin trajectories, which did not escape beyond the saddle at time t.

The stationary values: $R^{3d}/R^{1d} = 1.8$ $R^{3d}/R^{1d} = 5$

The lowest transient time – one-dimensional calculations

The results for the ²⁴⁸Cf

one-dimensional case: R(t) - flux over only saddle point

multi-dimensional case: R(t) - flux over populated saddle point configurations

The results for the ²⁴⁸Cf (two-body)

E*=30 MeV

The stationary values: $R^{3d}/R^{1d} = 3$ $R^{3d}/R^{1d} = 8$

The lowest transient time – one-dimensional calculations

The results for the ²⁴⁸Cf for E*=30MeV

The collective energy at saddle point configurations averaged over Langevin trajectories :

two-bodyone-body1d: <Ecoll> = 1.43 MeV1d: <Ecoll> = 1.26 MeV2d: <Ecoll> = 2.58 MeV2d: <Ecoll> = 2.07 MeV3d: <Ecoll> = 3.60 MeV3d: <Ecoll> = 2.65 MeV

The results for the ²¹³At (one-body)

1-dimensional versus 2-dimensional:

The same qualitative results for the stationary values, but different behavior for transient times.

Summary

- The results of R(t) calculations appreciable dependent on the number of collective coordinates involved in Langevin calculations.
- The transient time and stationary value of fission rate is larger in multi-dimensional calculations than in one-dimensional calculations.
- How the introduction of another collective coordinates will influence on the R(t)?