Yields from extended p-driver capabilities calculations and experimental results

M. Veselsky, S. Lukić, A. Kelić, M. V. Ricciardi, <u>K.-H. Schmidt</u>

Lay out

- 1. Introduction
- 2. Critical characteristics of the ISOL method
- 3. General aspects of relevant nuclear reactions
- 4. View on some specific extensions of the driver
- 5. Summary

Introduction

Standard Option for EURISOL Driver

Protons, 1 GeV
200 μA beam current for direct-target option
3-4 mA beam current for converter-target option

Experience from ISOLDE with proton beam, 600 MeV, 1 to 1.4 GeV

Options for Extended Capabilities considered

Eurisol RTD report, Accelerator group

- 1. A/q = 2 at 43 A MeV and A/q = 3 at 28 A MeV
- 2. A/q = 2 at 500 A MeV
- 3. A/q = 3 at 100 A MeV and A/q = 2 at 150 A MeV
- Eurisol RTD report, Target and Ion-Source group

A/q = 6 at 166.5 A MeV and A/q = 3 at 333 A MeV

Additional options

³He²⁺, E = 2 GeV Deuterons, $E \le 250$ MeV, $I \approx 5$ mA

Critical characteristics of the ISOL method

Characteristics of the ISOL method I. Target Materials

Extracted from "ISOLDE target and ion source chemistry", U. Köster, Radiochim. Acta 89 (2001) 749

→ Typical gaps in Z_{target} of \approx 10 or \approx 20 elements.

Characteristics of the ISOL method II. Extraction Efficiencies

Fig. 13. The overall efficiency of the OSIRIS target and ion source as a function of atomic number of fission-product nuclei. The upper curve is measured at a target temperature of 2400 °C. For comparison the lower curve shows the efficiencies of the previously used system at 1500 °C.

Taken from "Comparison of radioactive ion-beam intensities produced by means of thick targets bombarded with neutrons, protons and heavy ions" H. L. Ravn et al., Nucl. Instr. Meth. B 88 (1994) 441

Efficiencies depend on Z (figure only for qualitative illustration).

Characteristics of the ISOL method III. Extraction Losses

1% overall efficiency for indicated half-life.

R. Kirchner, GSI (2001)

— Losses due to radioactive decay before extraction.

Determination of the release function

Fr isotopes Calculated in target yields compared with measured ISOLDE yields

Extraction efficiencies

Half lives

S. Lukic et al., NIM A 565 (2006) 784

Release function

Empirical parameterisation by Lukic et al., NIM A 565 (2006) 784

General aspects of relevant nuclear-reactions

General features of spallation reactions (direct-target option, protons 1 GeV)

- Spallation-evaporation produces nuclides reaching from the projectile to about 10 to 15 elements below. (A few neutron-rich, most neutron-deficient)
- Spallation-fission (from Th, U) produces neutron-rich nuclides up to Z = 65.

Experiments performed at GSI

General features of low-energy fission (converter-target option)

• Nuclide production on two limited neutron-rich regions of the chart of the nuclides.

Calculation performed with ABRABLA

Spallation – energy dependence

Region of spallation-evaporation on the chart of the nuclides extends to lower masses with increasing energy available in the system.

Experiments performed at GSI

Production of sodium in ²³⁸U + p – dependence on beam energy

Steep increase of IMF production with increasing beam energy

Measurements at ISOLDE Calculations with ABRABLA

Tailoring the range distribution by heavy-ion fragmentation

Converter and catcher separated using HI beams.

Calculations by Villari and Mittig

Peculiarities of HI reactions at Fermi energies

¹²⁴Sn + ¹²⁴Sn at 20 A MeV
Full points: data
Open points: DIT+Gemini
Dashed lines: EPAX

Deep-inelastic transfer produces neutron-rich nuclei of lighter elements (similar to fission).

Enhancement compared to fragmentation (EPAX).

Data by Souliotis et al.

Quantitative view on some specific extensions of the driver

Filling gaps in mass by 2 GeV ³He beam

Production of Nd (Z = 60) isotopes with ΔZ = 2 (Sm-), 12 (Hf-), 22 (Pb-target) Hypothetical calculation with ABRABLA (based on experimental data with ²⁰⁸Pb) **Production at 1 GeV with** ΔZ = 12 is comparable to 2 GeV with ΔZ = 22. (Beam-power limitation reduces benefit of 2-GeV beam.)

Enhanced IMF production by 2 GeV ³He beam

Calculations with INCL/ABLA

Production of neutron-rich IMF from ²³⁸U enhanced by higher beam energy. (Again: Beam-power limitation reduces benefit of 2-GeV ³He beam.)

Deuteron-converter option

Calculations with ABRABLA

Deuteron option provides enhanced production for symmetric and extremely asymmetric fission.

Deuteron-converter option (example) 50 MeV deuterons 5 mA $(3 \cdot 10^{16} / s)$ heat in converter target: 200 kW fission rate: $\approx 10^{14} / s$ heat in production target: 3 kW High-power target (EURISOL) 1 GeV protons 3-4 mA (2·10¹⁶ / s) heat in converter target : 3-4 MW fission rate: ≈ 10¹⁶ / s heat in production target: 4 x 70 kW

Converter-catcher - ISOL scenario using heavy ions

Calculations by Mittig, Villari for HI option in target and ion-source group. Benefit for neutron-deficient isotopes of light elements.

Converter-catcher - ISOL scenario using heavy ions

Projectile	E/A	Ι	R						
	[MeV]	[mA]	[%]						
			28 A	43 A	100 A	150 A	166.5 A	333 A	500 A
			MeV	MeV	MeV	MeV	MeV	MeV	MeV
B, C, O	333	1	~ 1	~ 2	8 – 13	16 – 24	20 - 28	50 - 65	73 – 86
Ar	333	0.5	~0.5	~ 1	~ 7	~ 13	~ 15	~ 40	~ 63
Ca	166.5	0.5	~ 0.5	~ 1	~ 5	~ 11	~ 13	~ 35	~ 55
Ni	166.5	0.4	~ 0.5	~ 1	~ 5	~ 10	~ 12	~ 32	~ 53
Zn, Ge, Se, Kr, Ag	166.5	0.3	~ 0.5	~ 1	~ 5	9 – 10	11	~ 30	~ 50
Sn, Te, Xe, Ce	166.5	0.2	~ 0.5	~ 1	~ 4	~ 8	~ 10	~ 27	~ 45

R: Range of the projectile -> scaling of usable target thickness!

Bold numbers: Calculations by Mittig, Villari (previous figure). This option requires heavy ions with high energies (\rightarrow expensive!). Benefit only for light proton-rich nuclei (\rightarrow physics interest?) Extraction from target not fully developed.

Heavy-ion reactions at Fermi energy

Calculation: benefit for extremely neutron-rich isotopes of light elements.

Heavy-ion reactions at Fermi energy (x sections)

⁸⁶Kr + ⁶⁴Ni *E* = 25 *A* MeV

Production inside 3 degrees.

Comparison of experimental data with model calculations.

Data and calculations by M. Veselsky.

Experiment does not extend far enough to confirm calculated benefit. Highly relevant for fragmentation of neutron-rich ISOL beam (¹³²Sn)!

Conclusions

- 2 GeV ³He beam fills gaps in the masses far below available targets. (typical gain factor 3 to 5)
- 2 GeV ³He beam enhances production of neutron-rich IMFs. (typical gain factor 5)
- Deuteron-converter option yields wider nuclide distribution compared to 1-GeV proton converter-target option. (enhanced yields at symmetry and extreme mass-asymmetry)
- Converter-catcher ISOL scenario using heavy-ions separates heat load, provides projectiles where ISOL targets are not available, and allows higher production of light neutron-deficient nuclides. (expensive, physics interest?, extraction?)
- Heavy-ion reactions (deep-inelastic transfer) at Fermi energies (20 to 30 A MeV) provides benefit for neutron-rich isotopes with Z < 30. (Benefit in extreme wing of distribution predicted by model calculation.) Importance for choice of optimum energy in fragmentation of n-rich ISOL beam!

(This report is available on EURISOL WEB, other publications on www.gsi.de/charms.)