Beam preparation for EURISOL

Karl-Heinz Schmidt, GSI

- EURISOL concept
- Primary beam
- Target geometries
- Nuclear reactions
- The ISOL process
- Restrictions on target materials
- Restrictions on extracted elements
- Restrictions on half life
- ¹³²Sn a favourable case
- Unconventional options
 - **○** Use of heavy projectiles
 - Use of 2 GeV beam
 - Fragmentation of ¹³²Sn
- Conclusion

EURISOL concept:

- 1. Production of the nuclide by nuclear reactions
- 2. Release from the target by ISOL technique
- 3. Ionization
- 4. Acceleration

Experiments at EURISOL will rely on the required exotic nuclide with sufficient intensity to be available

Nuclear reaction, release, ionization determine the technological limits.

Primary beam

Standard option: 1 GeV protons (Guided by experience at ISOLDE, because it has been successful for producing long isotopic chains of many elements.)

Alternative options?

Target

The different aspects

- production
- heat load by the beam and nuclear reactions
- release

must be combined.

- 1. Direct target
 - a. Protons interact directly with the target material
- 2. Indirect target
 - a. Spallation neutron source (most of the heat load)
 - b. Production target (few-MeV neutrons and release)

Nuclear reactions

- 1. Direct-target option
 - a. Spallation-evaporation with ≤ 1 GeV protons
 - b. Spallation-fission with ≤ 1 GeV protons
 - c. Fission with secondary neutrons
- 2. Indirect-target option
 - a. Fission with few-MeV neutrons

Nuclear reactions: experimental results from GSI – 1.

Nuclear reactions: experimental results from GSI – 2.

Nuclear reactions: experimental results from GSI – 3.

Nuclear reactions: model calculation

Nuclear reactions: summary

1 GeV proton projectiles:

Neutron-rich spallation-evaporation residues over 5 elements Proton-rich spallation-evaporation residues over 10 elements Spallation-fission residues with actinide targets for Z < 60

Few-MeV neutron projectiles:

Neutron-rich low-energy fission products $30 \le Z \le 60$, dip at $Z \approx 46$

The ISOL process: Target materials

- Only few elements are suited as ISOL targets.
- There exist gaps of about 20 elements for suitable targets.

ISOL Process: Release

Z-dependent features:

- Volatility (refractory elements)
- Ionisation
- Isobaric contaminations

Features depending on half-life:

• Decay losses

Typical elements available with ISOL

Nuclear-reaction model for in-target production – ²³⁸U + p

Correlation of ISOL yields with isotope half-life 10

- Comparison of ISOLDE-SC yields[†] to in-target production rates
- Ratio yield/produced → overall extraction efficiency for the nuclide.
- For a given element target ion source, the efficiency is correlated with the isotope half-life

(S. Lukic)

[†]H.-J. Kluge, *Isolde users guide*, CERN, Geneva, 1986, web: http://isolde.cern.ch

10

atoms/rC)

10²

10

10

1Q ¹ 10

10

10

200

205

210

215

А

•

In-target production

225

230

Extracted yield

220

Another case ...

Universal behaviour, described by three parameters.

Systematics of decay losses

Composed by R. Kirchner from mg-target measurements at the GSI mass separator.

Pink: Z separation requires Laser ionization.

<u>General rule:</u> Slower release with increasing size and density of target!

Decay losses on the chart of the nuclides

Loss by $\frac{1}{4}$ from one isotope to the next exotic for $T_{1/2} < t_0$.

¹³²Sn – a very specific case

Double shell closure:

- In mass range produced by low-energy fission
- Enhanced production of neutron-rich isotopes (polarisation)
- Long half-life (small decay losses, even for large targets)
- Special scientific interest for nuclei around ¹³²Sn (doubly magic, r-process)

In addition:

• High ISOL release efficiencies

Alternative options

Alternative projectiles for ISOL approach:

- Use of heavy projectiles at Fermi energy (replaces unavailable target material, exploits isospin diffusion)
- Use of 2 GeV primary beam (³He)

Complex scenario:

- 1. p-n conversion
- 2. Fission of ²³⁸U
- 3. Fragmentation of ¹³²Sn

Other options?

Benefit of 2 GeV beam (GSI experiments)

Fragmentation of ¹³²Sn (exemplified on ¹³⁶Xe)

Production of neutron-rich isotopes by cold fragmentation

- Filling the gap of refractive elements
- Avoiding decay losses for short-lived isotopes

Fragmentation of ¹³²Sn

Charge-state distribution for Z = 50 in aluminium

Charge-state distribution for Z = 30 in aluminium

Arguments for the energy of the post-accelerator: Charge-states might cause impurity problems!

Conclusion

In-target production:

X + p (1 GeV) :good experimental knowledge from GSI experiments238U + n :rather well understood

ISOL process (subject to improvements by R&D):

- Restriction on target material (gaps of 20 elements)
- Release from target not for all elements
- Decay losses increase by factor of 4 for 1 neutron number
- Ionization may have low efficiency

Extended options:

• Consideration cost versus benefit – depend on demands

Please contribute with additional requests / ideas!

(Not all sources are given. Please look to www-w2k.gsi.de/charms!)