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Abstract. Fission determines the end-point of the astrophysical r-process and is expected to 
influence the nuclide abundances. Astrophysical network calculations require input on fission 
barriers of heavy r-process nuclei as well as mass- and element-distributions of the fission 
fragments. This manuscript reviews the status of present experimental and theoretical 
knowledge in this field. New methods are described and applied to make predictions on 
saddle-point masses and fission-fragment nuclide distributions for r-process nuclei. 

Introduction 
Different processes have contributed to the abundances of the nuclides we find in the 
Universe. While the Big Bang mostly left over hydrogen and helium, the synthesis of 
elements up to iron deliver the nuclear energy for stellar burning. The most important 
mechanisms for the production of heavier elements rely on neutron capture. Roughly, two 
processes can be distinguished, the “slow” s process and the “rapid” r process. Low neutron 
densities occur in suitable scenarios of stellar burning. After neutron capture, the nucleus falls 
back to a beta-stable nucleus by beta decay before another neutron is trapped. Thus, the s-
process path leads along neutron-rich beta-stable nuclei. The s process necessarily stops at 
209Bi, because 211Po, which is produced after beta decay of 210Bi, decays back to 206Pb by 
alpha decay. In supernovae or other explosive scenarios, very much higher neutron densities 
may occur, and consequently the time between two consecutive neutron-capture processes 
becomes much shorter. Thus, the r process proceeds via very neutron-rich nuclei far from the 
beta-stability valley. In the r process, fission can have an important influence on the 
abundances of long-lived actinides, which are relevant for determination of the age of the 
Galaxy and the Universe [1]. In scenarios where high neutron densities exist over long 
enough periods, fission has decisive influence on the termination of the r-process and 
production of super-heavy elements [2]. In similar scenarios, fission will influence the 
abundances of nuclei in the region A~90 and A~130 due to the fission cycling [3,4].  
Studies on the role of fission in the r process began forty years ago [3]. Meanwhile, extensive 
investigations on beta-delayed, neutron- and neutrino-induced fission have been performed; 
see e.g. [4, 5, 6, 7, 8, 9]. One of the common conclusions from all this work is that the 
influence of fission on the r process is very sensitive to the fission-barrier heights of heavy r-
process nuclei with A>190 and Z>84, since they determine the calculated fission probabilities 
of these nuclei. Moreover, information on mass- and element distributions of fragments 
formed in the fission of these heavy r-process nuclei is essential for calculations of r-process 
abundances. 
In this contribution, we will concentrate on the status of experimental and theoretical 
knowledge on the fission process, which is needed as input for r-process calculations. We will 
discuss in details the heights of fission barriers and the fragment formation in fission. Firstly, 
using available experimental data on saddle-point and ground-state masses, we will present 
a dedicated study on the predictions of different models on the dependence of saddle-point 
masses on neutron excess [10]. Secondly, we will present a model for calculating mass- and 
element-distributions of fission fragments, which can correctly predict the transition from 
double-humped to single-humped distributions with decreasing mass of the fissionning 
system and increasing excitation energy in the light actinides. The results provide improved 
input for the role of fission in r-process network calculations. 

Fission barriers 
One of the most important ingredients for calculating fission probabilities is the height of the 
fission barrier. Unfortunately, experimental information on fission-barrier heights is only 
available for nuclei in a limited region of the nuclide chart, as shown in Figure 1.  
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Figure 1. Available data (green dots) on fission barriers for Z ≥ 80 taken from the RIPL-2 
library [11] and shown on the nuclear chart. Black squares represent the stabile nuclei, and 
the red marked region a possible r-process path. 
 
 

Therefore, for heavy r-process nuclei one has to rely on theoretically calculated barriers. Due 
to the limited number of available experimental barriers, in any theoretical model constraints 
on the parameters defining the dependence of the fission barrier on neutron excess are 
rather weak. This leads to large uncertainties in estimating the heights of the fission barriers 
of heavy nuclei involved in the r process. For example, it was shown in Ref. [6] that 
predictions on the beta-delayed fission probabilities for nuclei in the region A ~ 250 – 290 and 
Z ~ 92 – 98 can vary between 0% and 100% depending on the model used, thus strongly 
influencing the r-process termination point. Moreover, the uncertainties within the nuclear 
models used to calculate the fission barriers can also have important consequences on the r 
process. Meyer et al. have shown that a change of 1 MeV in the fission-barrier height can 
have strong influence on the production of the progenitors (A ~ 250) of the actinide 
cosmochronometers, and thus on the nuclear cosmochronological age of the Galaxy [12]. 
Recently, important progress has been made in developing full microscopic approaches to 
nuclear masses and fission barriers, see e.g. [13]. However, the macroscopic-microscopic 
approach offers some advantages for evaluating global trends, which are important for 
applications far from stability. We will see that this is particularly true for fission-saddle 
masses. In the macroscopic-microscopic approach, the smooth trends in the potential-energy 
landscape of the fissioning system are described by a macroscopic model based on some 
liquid-drop or droplet picture, while local fluctuations are calculated separately within a 
microscopic model using the Strutinsky method [14]. Due to the separation between 
macroscopic and microscopic properties of the system, this approach is very well adapted for 
the global description of different properties of the system not only in nuclear physics [15] but 
also in other fields, see e.g. [16]. The free parameters of these models are fixed using the 
nuclear ground-state properties and, in some cases, the height of fission barriers when 
available. Some examples of such calculations are shown in Figure 2 (upper part), where the 
fission-barrier heights given by the results of the Howard-Möller fission-barrier calculations 
[17, 18], the finite-range liquid drop model (FRLDM) [19], the Thomas-Fermi model (TF) [20], 
and the extended Thomas-Fermi model with Strutinsky integral (ETFSI) [21] are plotted as a 
function of the mass number for several uranium isotopes (A = 200-305). In case of the 
FRLDM and the TF model, the calculated ground-state shell corrections of Ref. [22] were 
added as done in Ref. [23]. In cases where the fission barriers were experimentally 
determined, the experimental values are also shown. From the figure it is clear that as soon 
as one enters the experimentally unexplored region there is a severe divergence between the 
predictions of different models.  
We have performed a study on the behaviour of the fission barriers when extrapolating to 
very neutron-rich nuclei [10]. This study was based on the approach of Dahlinger et al. [24], 
where the predictions of the theoretical models were examined by means of a detailed 
analysis of the isotopic trends of ground-state and saddle-point masses.  
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Figure 2. Full macroscopic-microscopic (upper part) and macroscopic part (lower part) of the 
fission barrier calculated for different uranium isotopes using: the extended Thomas-Fermi 
model + Strutinsky integral [21] (dotted black line), the Thomas-Fermi model [20] (full green 
line), the finite-range liquid-drop model [19] (dashed red line), and the Howard-Möller tables 
[17] (full blue line). In case of FRLDM and TF the ground-state shell corrections were taken 
from Ref. [22]. The small inset in the upper left part represents a zoom of the region where 
experimental data are available. 
 
 
In order to test the consistency of these models, we study the difference between the 
experimental saddle-point mass expexpexp
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The difference between experimental and macroscopic mass, δUsadd as given by Eq. 1 should 
correspond to the empirical shell-correction energy.  
It is well known that the shell-correction energy oscillates with deformation and neutron or 
proton number. If we consider deformations corresponding to the saddle-point configuration, 
then the oscillations in the microscopic corrections for heavy-nuclei region we are interested 
in have a period between about 10 ~ 30 neutrons depending on the single-particle potential 
used, see e.g. [25, 26, 27, 28]. This means that, if we follow the isotopic trend of the shell-
correction energy at the saddle point over a large enough region of neutron numbers, this 
quantity should show only local variations with the above given periodicity. Myers and 
Swiatecki gave another argument that tends to make this approach even more powerful. 
Theoretical considerations on the topologic properties of the fission saddle and experimental 
verifications suggested that the difference between the macroscopic saddle mass and the 
saddle mass including the influence of shell corrections is very small – below 1 – 2 MeV [20, 
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23, 29]. Thus, the local variations of δUsadd should be very small. In other words, the saddle-
point shell-correction energy as a function of neutron number should show only local, 
periodical, variations with small amplitude; there should be no global tendencies, e.g. 
increase or decrease with neutron number. 
We have used this fact in Ref. [10] to test the macroscopic part of the different, above 
mentioned, models. Using experimental ground-state masses [30] and experimental fission 
barriers and different macroscopic models, we have calculated the quantity δUsadd as given by 
Eq. 1 for a wide range of neutron numbers. If a model realistically describes the isotopic 
trend, the quantity δUsadd  will correspond to the shell-correction energy at the saddle point 
and will fulfil the above-mentioned condition, i.e. the slope of δUsadd as a function of neutron 
number will be close to zero ( ( ) 0/ ≈∂∂ NU saddδ ). On the contrary, if a model does not 
describe realistically the isotopic trend, then the quantity δUsadd as a function of neutron 
number will show global tendencies, like e.g. increase or decrease over a large range of 
neutron numbers ( ( ) 0/ ≠∂∂ NU saddδ ). Figure 3 shows the variation of δUsadd for the uranium 
isotopic chain. Only the finite-range liquid-drop model and the Thomas-Fermi model 
reproduce the variation of the experimental saddle-point masses as a function of neutron 
number correctly, while the trends of the droplet model and the extended Thomas-Fermi 
model deviate from the data in opposite directions. 
 

 
Figure 3. Difference between the experimental and the macroscopic part of the saddle-point 
mass calculated with the droplet model, the finite-range liquid-drop model, the Thomas-Fermi 
model and the extended Thomas-Fermi model for different uranium isotopes. The lines 
represent linear fits to the data. 

 
 

The average slopes ( ( ) NUA sadd ∂∂= /1 δ ) of δUsadd as a function of neutron number are 
shown in Figure 4 versus atomic number over a range of 10 elements for the four models. 
For more details, see [10].  
We can see from Figure 4 that the Thomas-Fermi and the Finite-range liquid drop model 
predict slopes which are very close to zero, while the Droplet and the extended Thomas-
Fermi model result in slope values which are not consistent with zero. 
The results of this study (see also [10]) show that the most realistic predictions for r-process 
nuclei are expected from the Thomas-Fermi model [20]. A similar conclusion can be made for 
the finite-range liquid-drop model [19], while further improvements in the saddle-point mass 
predictions of the droplet model [18] and the extended Thomas-Fermi model [21] seem to be 
needed.  
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Figure 4. Average sopes of the variation of δUsadd with neutron excess are shown as a 
function of the nuclear charge number Z obtained for the Droplet model [18] (points), the 
Thomas-Fermi model [20] (triangles), FRLDM [19] (squares) and the extended Thomas-
Fermi model [21] (rhomboids). The full lines indicate the average values of the slopes. The 
average values are also given in the figure. Error bars originate from the experimental 
uncertainties in the fission-barrier heights. Dashed lines are drawn to guide the eye. For more 
details, see [10]. 
 

Mass and nuclear-charge division in fission 
For understanding the role of fission in the r-process nucleosynthesis, apart from fission 
probabilities one also needs the masses and atomic numbers of the fragments created in the 
fission of heavy progenitors. For example, Qian has recently proposed that the observed 
structures at A~90 and A~130 in the r-process abundances in low-metallicity, old galactic 
halo stars can have their origin in the fission of heavy progenitors Aprog ~ 190 – 320 [31]. In 
order to test this and other similar ideas (see e.g [3, 4, 2, 7]) one needs reliable predictions 
on the mass and charge distributions of the fission fragments formed during the r process. 
Usually it is assumed in astrophysical calculations that either both fission fragments have the 
same mass and the same atomic number, or that one fragment corresponds to the double-
magic 132Sn and the second fragment has A = Aprog – 132 and Z = Zprog – 50. Both these 
assumptions are rather simplistic and not always supported by the experimental data. This 
can be clearly seen from Figure 5. 
For the lightest nuclei shown in Figure 5, the distributions of fission fragments are symmetric. 
With increasing the mass of the fissionning system we observe a transition to triple- and 
double-humped distributions. For the heaviest systems the distributions become again 
symmetric, but with much smaller widths as compared to the lightest systems around 
astatine. If one looks at fission-fragment distributions for a given isotopic chain, for nuclei in 
the actinide region one can see a smooth transition from double-, to triple- and then to single-
humped distributions for the lightest fissionning systems in the isotopic chain, see Figure 6. 
On the contrary, in case of fermium Figure 5 shows a very abrupt transition from single- to 
double-humped distribution when going from 258Fm to 256Fm. 
Most of the more elaborate model descriptions of the fission process follow one of the 
following approaches: Either the measured observables – mass, element and kinetic energy 
distributions – are fitted by suitable mathematical functions with empirically determined 
parameters or the evolution of the fissioning system is described with a purely theoretical 
model. Following the first approach [32, 33], one is able to reproduce existing data very well. 
However, the predictive power of phenomenological models is rather low due to the lack of 
the essential physics.  
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Figure 5. Available experimental data on mass or charge distributions in low-energy fission – 
green crosses: Z-distributions of fission fragments formed in fission after electro-magnetic 
excitations [34], blue circles: mass distributions from particle-induced and spontaneous 
fission. For more details, see Ref. [34]. For several compound nuclei mass or charge 
distributions of fission fragments are shown in small insets.  
 
 

 
Figure 6. Element distributions observed in the fission of neutron-deficient actinides after 
electromagnetic excitations [34].  

 
 
The second approach is very challenging: Due to the complexity of the problem, any 
theoretical model has to introduce a certain level of simplifications. In addition, one has to 
face the difficulty that the theoretical models are able to predict the relevant properties of a 
nuclear system only with a limited accuracy. This is obvious for the potential-energy surface 
in deformation space. Even in the nuclear ground-state configuration, where the single-
particle structure is generally very well studied, the measured binding energies can only be 
reproduced with a standard deviation in the order of half an MeV. Such deviations are crucial 
for fission, e.g. a shift of 500 keV in the ground-state binding energy modifies the 
spontaneous-fission half life by about 2 orders of magnitude [35].  
Recently, important progress has been made in developing a fully microscopic approach to 
the nuclear-fission process with inclusion of dynamic effects [36]. Using a time-dependent 
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formalism based on the Gaussian overlap approximation of the time-dependent generator 
coordinate theory and the self-consistent Hartree-Fock-Bogoliubov procedure, the authors of 
Ref. [36] could predict fission-fragment kinetic energies and mass distribution in the low-
energy fission of 238U in a rather satisfactory way. Due to the complexity of the problem, the 
authors have limited their approach by applying the adiabatic hypothesis, which confines their 
model to very low excitation energies.  
Another type of theoretical models which are often used is based on the macroscopic-
microscopic approach, e.g. [37, 38, 39, 40, 41, 42, 43, 44, 45]. Macroscopic-microscopic 
models for calculating fission-fragment properties can be divided in two groups: The first 
group represents fully static models, in which no dynamic effect is considered [37, 38, 39, 41, 
43]. Here, the properties of fission fragments are calculated by applying the statistical model 
either at the saddle [43] or at the scission point [37, 38, 40]. In the second group, dynamic 
effects are included by using the Langevin approach for solving the equations of motion of 
the fissioning system [44, 45]. In this case, the challenge is to describe the influence of 
microscopic effects on the transport coefficients. To our knowledge, this still has not been 
done. 
For improving our understanding of the fission process, theoretical models are mandatory. 
Nevertheless, due to the above-mentioned uncertainties and limitations their ability for 
quantitative predictions seems to be still rather restricted. Moreover, in many cases they are 
very time consuming which prevents their use for applications. In order to surmount these 
problems, we have developed a model, which combines these two approaches. Our semi-
empirical model exploits several important features of the fission process according to the 
present theoretical understanding and at the same time makes use of the experimental 
information available in order to provide reliable predictions of fission-fragment nuclide 
distributions of nuclei far from stability. The model is imbedded in the dynamic de-excitation 
code ABLA [46], which considers the competition between evaporation of neutrons, light 
charged particles and intermediate-mass fragments on one side and fission on the other side. 
For excitation energies above the corresponding threshold also break-up and the 
simultaneous emission of several fragments is considered [47]. Fission is treated as a 
dynamical process, taking into account the role of dissipation in establishing quasi-equilibrium 
in the quasi-bound region by the implementation of a time-dependent fission-decay width 
[48]. When the system passes the fission barrier and proceeds to fission, it is characterised 
by mass and atomic number, excitation energy and angular momentum. It is the aim of our 
model to follow the descent from saddle to scission of the system and to predict the 
probability that its ends up in one of the many possible splits in Z and A. We would like to 
mention that preliminary versions of this model have been published previously [49, 50]. 
Starting with Fong [37, 38] and followed later by Wilkins et al. [40], the statistical model has 
been taken as the basis of most fission models that provide quantitative predictions on 
nuclide yields. Since the available phase space is a very important driving force of any 
process in nature, we consider the statistical model as the basis also of our model. Fong as 
well as Wilkins et al. avoided considering dynamical effects by applying the statistical model 
at the scission configuration. This is a rather severe simplification, which is certainly not 
realistic. Depending on the relaxation times of the different collective degrees of freedom, 
some memory on previous configurations might be present. Therefore, we will discuss this 
point with some care.  
First we start considering fission at high excitation energy, where shells and pairing 
correlations are negligible. Observed mass distributions of heavy fissioning nuclei above the 
Businaro-Gallone point (i.e. Z2/A > 22) from high excitation energies can well be described by 
a Gaussian distribution. This finding has been related to the available number of states above 
the potential energy as a function of mass asymmetry, since the potential can be 
approximated by a parabola near the minimum appearing at mass symmetry [51]. The 
second derivative cA = d2U /(dA1)2 of the potential as a function of the mass of one of the 
nascent fragments is related to the standard deviation σA of the mass distribution by the 
following relation: 

A
A c

T
⋅

=
2

2σ                                                                       (1) 

T is the nuclear temperature, which is related to the excitation energy of the fissioning system 
E = a T2. The coefficient a is the level-density parameter. 
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This relation is a very important starting point of our model. Firstly, there exists a large body 
of experimental data on σA values, which provides the empirical data basis for a realistic 
prediction of fission mass distributions when structural effects are negligible. Secondly, the 
empirical result that the variance σA

2 is proportional to the nuclear temperature supports the 
validity of the statistical model. However, it is difficult to extract from these data, at which 
moment on the descent from saddle to scission the decision on the width of the mass 
distribution is taken. We can imagine two possible extremes. In one case, the phase space at 
the saddle point determines the mass asymmetry of the system, which is more or less frozen 
on a fast descent to scission. In the other case, the mass asymmetry degree of freedom 
adjusts very fast to the potential and thus it is finally determined at scission. Since a variation 
of the mass asymmetry is connected with a substantial transport of nucleons and, thus, the 
inertia should be large, we tend to support the first possibility, which is also supported by 
Langevin calculations [52], Following this idea, we take the systematics established in Ref. 
[51] using the temperature at saddle in equation (1) for deducing the second derivative cA of 
the potential from the experimental data. In fact, Rusanov et al. [51] deduced a direct relation 
of cA with the fissility parameter Z2/A of the fissioning nucleus. Thus, we have the first 
quantitative relation we use in our model to calculate the width of the mass distribution in 
case of sufficiently high excitation energies.  
Considering the fission process at lower excitation energies, our approach has to be 
substantially extended in order to include the appearance of fission channels. Early ideas for 
this concept are formulated in Ref. [53]. Following the hypothesis that the mass asymmetry 
degree of freedom is essentially frozen at saddle, the probabilities for the population of the 
different fission channels should be decided at the outer saddle. Therefore, we assume that 
there is a direct correspondence between the shape of the potential at the outer saddle as a 
function of mass asymmetry and the population of the fission channels. The appearance of 
each fission channel is linked to a specific minimum in the mass-asymmetry dependent 
potential at the outer saddle. At this stage we empirically determine the depths and the widths 
of potential minima of the different fission channels by the weights and the widths of the 
corresponding components in the empirical nuclide distributions. For this purpose, we need to 
calculate the number of states available in the different potential minima. This time, the 
Fermi-gas level density is not realistic: We have to consider the level density in a 
configuration with a substantial shell effect. For this purpose, we use the analytical relation 
proposed by Ignatyuk et al. [54]. 
The description of Ignatyuk et al. requires the knowledge of the macroscopic potential. 
According to the previous discussion, we represent it by the parabolic potential deduced by 
Rusanov et al. [51] from the widths of the mass distributions at high excitation energies. 
We consider the mass distribution of the fission fragments from 238U(n,f) as the key 
information for the quantitative determination of the shell effects at the outer barrier. As 
demonstrated in Figure 7, one obtains a rather consistent description, which reproduces the 
decrease of the relative population of the asymmetric fission channels with increasing 
excitation energy just by introducing two shells corresponding to the Standard 1 and 
Standard 2 fission channels [55], and by considering the washing out of the shell effects with 
increasing excitation energy.  
Up to now, the shells at the outer barrier are formulated as a function of mass asymmetry. At 
this stage, we have a look to the results of shell-model calculations with the two-centre shell 
model [56], respectively Cassini shapes [57]. They reveal that the shell effects at the outer 
barrier in 238U are qualitatively similar to the shells in the separate fragments. It seems that 
the structure of the wave functions is quite similar all the way from the outer saddle to 
scission [58]. This is not valid any more for more compact shapes, since the energetically 
favoured shape at the inner saddle is triaxial and mass-symmetric. Thus, we can profit from 
the investigations of Wilkins et al. [40] on the scission-point configuration, who stated that the 
most important shells behind the Standard 1 fission channel are N = 82 and Z = 50, while the 
Standard 2 fission channel is related to the N ≈ 90 strongly deformed shell. Following these 
ideas, we attribute the two mass-asymmetric fission channels to the shells in the nascent 
heavy fragment mentioned above, while we neglect the influence of shell effects in the light 
fragment. From our adjusted parameters it appears that the spherical N = 82 and Z = 50 
shells are considerably weaker than the shell effects we know from the ground-state masses 
around 132Sn. It might be assumed that the additional matter in the neck disturbs the 
symmetry of the nascent heavy fragment and reduces the shell gaps compared to the ideal 
spherical configuration we meet in 132Sn. The dominating appearance of the Standard 2 
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fission channel in 238U(n,f) seems to indicate that the deformed N ≈ 90 shell, which appears 
less strong in the separate fragments, see the results of the shell-model calculations in Ref. 
[40], is less affected by the neck. Also the deviation of the N/Z ratio of 132Sn from the 
corresponding value of the fissioning nucleus weakens the influence of the Standard I fission 
channel. 
For completeness, we would like to mention that the model not only describes mass 
distributions but also considers the charge polarization in the nuclide production. Since there 
is only very little nucleon exchange necessary to exploit the full variation in N/Z to be 
expected, we assume that the charge polarization is determined near scission. Quantitatively, 
the charge polarization is governed by the macroscopic contributions to the energy at 
scission [59] in most cases. Only the simultaneous influence of the Z = 50 and N = 82 shells 
leads to a rather important deviation from this trend for the Standard 1 fission channel, which 
tends to produce nuclides closer to the doubly magic 132Sn. The width of the charge 
distribution for constant mass split is determined in analogy to equation (1), inserting the 
temperature and the curvature of the potential for charge polarization at scission. 

 
Figure 7. Calculated mass distributions (pink symbols) for neutron-induced fission of 238U in 
comparison with experimental data (black symbols) [60, 61] for different values of the 
excitation energy above the fission saddle of the composite system 239U. The calculated 
individual contributions of the different fission channels are shown in addition: Standard 1 
(green), Standard 2 (blue), and Superlong (orange). 
 
 
After having adjusted the strengths and the widths of the three shells to the mass 
distributions of the system 238U(n,f), we are interested to check the predictive power of the 
model by applying it to other systems.  
As an example for the application of this approach, we show in Figure 8 the model-calculated 
element distributions of fragments formed in the electromagnetic-induced fission of several 
secondary beams ranging from 220Ac to 234U. They compare rather well with the experimental 
data, shown in Figure 6. The transition from single- to triple- and then to double-humped 
fragment distributions is correctly described by the model. Please note, that all calculations 
were performed with one and the same set of model parameters; no adjustment to individual 
systems has been done. In particular, the parameters of the shells of the nascent fragments 
are exactly the same for all systems. Considering this success, we conclude that our model 
has a remarkable predictive power, once the parameters have carefully been deduced from 
experimental fission-fragment distributions. This gives us confidence when extrapolating into 
regions where no experimental data are available. In case of r-process simulations, the 
model was applied in Ref. [9]. 
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Figure 8. Calculated fission-fragment nuclear-charge distributions in the range Z = 24 to Z = 
65 from 220Ac to 234U in electromagnetic-induced fission shown on a chart of the nuclides.  
 
 

We would like to stress that the most salient feature of our model represent a rather peculiar 
application of the macroscopic-microscopic approach to nuclear properties. In our 
consideration of the properties of the fissioning system at the saddle configuration, we 
attribute the macroscopic properties to the strongly deformed fissioning system, while the 
microscopic properties are attributed to the shell structure in the nascent fragments. This 
way, the macroscopic and the microscopic properties are strongly separated, and the number 
of free parameters is independent from the number of systems considered. 

Conclusions 
In this contribution, we have discussed the status of present experimental and theoretical 
knowledge on some aspects of fission which are important input for the r-process 
calculations. We have specifically concentrated on the height of the fission barrier and on 
fragment formation in fission.  
Using available experimental data on fission barriers and ground-state masses, we have 
presented a detailed study of the predictions of different models concerning the isospin 
dependence of saddle-point masses. Evidence is found that several macroscopic models 
yield unrealistic saddle-point masses for very neutron-rich nuclei, which are relevant for the r-
process nucleosynthesis. 
We have also discussed different approaches used to calculate fission-fragment distributions. 
Empirical systematics are not suited for astrophysical applications. Theoretical approaches 
still fail to include all important features of the fission process, but they can give good 
orientation of major trends. A macroscopic-microscopic approach based on macroscopic 
properties of the fissioning system and microscopic properties of the nascent fission 
fragments with schematic considerations of dynamical features seems to be a promising tool 
for robust extrapolations of empirical features.  
On the experimental level there is little hope to obtain direct information on the fission 
properties of the heavy nuclei on the r-process path in the near future. However, novel 
experimental installations, like the electron-ion collider (ELISE) project [62] at GSI, may 
contribute essentially to widen the empirical knowledge to more exotic nuclei and thus are 
expected to improve our empirical basis for predictions and extrapolations needed as an 
input of r-process network calculations. 
Acknowledgments. We are in debt to Karlheinz Langanke, Gabriel Martinez-Pinedo and 
Nikolaj Zinner for fruitful discussions concerning the r process.  
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