Spallation reactions studies in inverse kinematics at GSI *

Aleksandra Kelić for the CHARMS collaboration[§] GSI Darmstadt, Germany

* Work performed in the frame of the HINDAS project

§ http://www-w2k.gsi.de/charms

□ Fragment separator (FRS)

Resolution and acceptance

□ Experimental results – general view

Nuclide distributions

Experimental results – specific

What can we learn from the data?

Outlook

Interest in spallation reactions

- **ADS technology**: Data on high-energy proton-induced reactions in different materials (e.g. spallation target, beam window, construction materials ...)

Nuclear reactions up to 1 GeV have to be known

- Reactions studied at GSI:

Projectile	Target	Energy [A GeV]
⁵⁶ Fe	¹ H	0.3, 0.5, 1.0, 1.5
^{136,124} Xe	^{1,2} H	0.2, 0.5, 1
¹⁹⁷ Au	¹ H	0.8
²⁰⁸ Pb	^{1,2} H	0.5, 1
²³⁸ U	^{1,2} H	1

Data available at http://www-w2k.gsi.de/charms/data.html

- Excellent basis for model benchmarking
- Also \Rightarrow **RIB** production, neutron sources, astrophysics, space technology

Inverse kinematics

- In-flight identifications of heavy reaction products:

High-energy (~ 1 *A* GeV) heavy-ion beam impinges on liquidhydrogen target

□ Kinematical properties

Experimental facility at GSI

Fragment separator (FRS)

Resolution:

- Δ(Bρ)/Bρ ≈ 5·10⁻⁴
- $\Delta A/A \approx 2.5 \cdot 10^{-3}$
- $\Delta Z/Z \approx 5 \cdot 10^{-3}$
- $\Delta(\beta\gamma)/\beta\gamma = 5 \cdot 10^{-4}$

Measured production cross sections

Napolitani PhD, Villagrasa PhD

Need for global models

Role of dissipation in fission

²³⁸U + p at 1 A GeV; Experiment vs. ABLA calculations

EXP: $\sigma_{fiss} = 1.53 \pm 0.2 \text{ b}$ DM: $\sigma_{fiss} = 1.52 \text{ b}$ TSM: $\sigma_{fiss} = 1.73 \text{ b}$

Dynamical model

A- and Z-distributions in fission

Data: Sträde et al, Perry et al, Gindler et al, Schmidt et al

Data: Bernas et al, Pereira et al, Enqvist et al

- Coincidence measurement of heavy residues, light charged particles and neutrons with ⁵⁶Fe at large-acceptance magnet ALADIN at GSI
 Investigation of the decay of highly excited heavy nuclei
- Full identification of both fission fragments, simultaneous measurement of neutrons, light charged particles and gammas with new R3B magnetic spectrometer
 - ⇒ Aiming for a kinematically complete fission experiment

http://www-w2k.gsi.de/charms

Collaborations

<u>GSI</u>

P. Armbruster, T. Enqvist, L. Giot, K. Helariutta, V. Henzl, D. Henzlova,
B. Jurado, A. Kelić, R. Pleskač, M. V. Ricciardi, K.-H. Schmidt, C. Schmitt,
F. Vives, O. Yordanov

IPN-Paris

L. Audouin, M. Bernas, B. Mustapha, P. Napolitani, F. Rejmund,

C. Stéphan, J. Taïeb, L. Tassan-Got

CEA-Saclay

A. Boudard, L. Donadille, J.-E. Ducret, B. Fernandez, R. Legran, S. Leray, C. Villagrasa, C. Volant, W. Wlazło

13 PhD

University Santiago de Compostela

J. Benlliure, E. Casarejos, M. Fernandez, J. Pereira

CENBG-Bordeaux

S. Czajkowski, M. Pravikoff

Liquid ¹H and ²H targets

Identification pattern

Charge identification

From energy loss in MUSIC

Z / Δ **Z** \approx **200** for heaviest products

²³⁸U+Ti at 1 *A* GeV M.V. Ricciardi, PhD thesis

<u>Mass identification</u>

From $B\rho$ and $\beta\gamma$

A / $\Delta A \approx 400$

Kinematics

✓ Production mechanism –

fission / fragmentation

T. Enqvist et al, NPA658 (1999), 47.

Thermal instabilities

ALADIN - 4π experiments, only light products

FRS - Thermometry extended to heavy products (K.-H. Schmidt et al, NPA 710 (02) 157)

 ✓ Unique picture ⇒ maximum temperature of ~ 5 MeV above which compound system can not survive as an entity.

Thermal instabilities

P. Napolitani, PhD thesis, PRC accepted

 Have to be considered in order to describe the production of light residues, especially in p-induced reactions on lower-mass targets.

Even-odd staggering in the final residue yields

Even A: even Z favoured
Odd A, p rich: even Z favoured
Odd A, n rich: odd Z favoured (20%)

■ N=Z: huge staggering >50%!

Number of excited levels of the mother that could decay into the daughter determines the probability of a channel (M.V. Ricciardi et al, NPA 733 (04) 299).

✓ Restoring of the nuclear structure in the very last steps of the evaporation.

GSI code ABRABLA

Experiment

□ ABRABLA calculations

T. Enqvist et al., NPA686 (01)481

