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Abstract 
Fission after very peripheral heavy-ion collisions at relativistic energies is a very powerful 
tool for the investigation of dissipation. Such approach has been followed at GSI where 
the total and partial fission cross sections of some stable and a large number of unstable 
nuclei have been measured. These data are sensitive to the description used for the time 
dependent fission decay width, Γf(t), and to other model parameters like the fission 
barriers, Bf, and the ratio of the level-density parameters, af /an. The partial fission cross 
sections are not reproduced when an exponential in-grow function is used to describe Γf(t) 
in the theoretical code. Moreover, a further preliminary analysis of the experimental data 
leads to a confirmation of the theoretical values predicted for Bf  and af /an, and to a 
dissipation coefficient β = 2⋅1021s-1 that corresponds to a transient time τf  ≅ 2⋅10-21s. 
 

 

1. Introduction 
Dissipation in nuclei leads to fission time scales that exceed the prediction of the 
Statistical Model. Intense and very diverse experimental work has been done to determine 
these fission time scales. However, this subject is still rather controversial and no clear 
agreement has been found until now. The difficulties in the experimental determination of 
nuclear dissipation arise from the side effects (for example angular momentum) that most 
experiments present. The interpretation of these experiments requires very complicated 
models and that hampers the extraction of relevant information related to dissipation. The 
experimental approach we present here, based on fission induced by very peripheral 
heavy-ion collisions at relativistic energies, corresponds to an almost ideal scenario where 
the effects of dissipation can be properly analysed. The diffusion model of Grangé and 
Weidenmüller [1] describes this scenario and leads to a transient time τf to build up the 
fission decay width, Γf, up to its asymptotic value. In most theoretical codes, 
approximations for this time behaviour of Γf are used; in this work the two most 
frequently used descriptions are subject to a critical analysis. The comprehensive 
experimental information gained at GSI on total fission cross sections and element 
distributions from a wide range of systems shows that the deduced dissipation strongly 
depends on the description used for the time dependence of Γf. Furthermore, these 
experimental data can also be used to determine further critical parameters governing the 
fission process, namely, the level-density parameter and the fission barrier.  



 
2. An appropriate scenario for the investigation of dissipation in fission 
An ideal scenario for investigating dissipation in fission is one in which the initial 
conditions of the fissioning nucleus are well defined and such that the consequent 
evolution of the system is determined by the dissipation. This would be the case for a 
heavy nucleus with the following initial conditions: 

• high intrinsic excitation energy 

• no deformation in fission direction, that is, the fission degree of 
freedom is not excited 

• no angular momentum  

Such a nucleus needs some time to deform and to cross the fission barrier. This time is 
determined by dissipation, that means by the rate with which the energy is transferred 
between intrinsic and collective degrees of freedom. While the nucleus deforms in fission 
direction, part of the intrinsic excitation energy is also consumed by particle emission. 
Consequently, the longer the time to reach the fission barrier, the lower is the probability 
that the system fissions. It is then clear that in such scenario fission cross sections are 
closely related to the strength of dissipation. 

Grangé and Weidenmüller [1] recalling some old ideas of Kramers [2], developed a 
diffusion model to describe this scenario in a quantitative way. In their model, the fission 
process is considered as the evolution of the fission collective degree of freedom in the 
heat bath formed by the individual states of the nucleons. This process can be described 
by the Fokker-Planck Equation (FPE) [3,4] in which dissipation effects are included via 
the dissipation coefficient β which is defined as: 
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Where Ecoll is the intrinsic energy transferred to the collective degree of freedom and 
equ
collectiveE  is the energy of the collective degree of freedom at thermal equilibrium. Grangé 

and Weidenmüller solved the FPE numerically with a realistic nuclear potential and under 
the initial conditions listed above. They obtained a time-dependent fission width of the 
form: 

( ) ( )tfKt BW
f β⋅⋅Γ=Γ    (2) 

The first term of equation 2, ΓBW is the time- and dissipation-independent fission width 
that is obtained by applying the transition-state model of Bohr and Wheeler [5]. The 
second term K is the Kramers factor: 
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where ω0 describes the potential curvature at the saddle point, and the last term fβ(t) is a 
time-and dissipation-dependent function. 

Let us first consider the term ΓBW. According to the transition-state model, the fission 
decay width is mainly given by the integral of the level density above the fission barrier 
(at the saddle point deformation), and the decay width for neutron evaporation is given by 
the integral of the level density over the ground-state deformation of the daughter nucleus. 
There are two key parameters that have to be defined a priori if this model is applied: the 
fission barrier, Bf, and the ratio of the level density parameters, af /an. Different reliable 
theoretical estimations of both parameters have been developed, for example, for Bf the 
calculations done in [6] and for af /an the formulation of reference [7]. In reference [7], the 
mass and deformation dependence of the level density leads to a value of af /an slightly 
larger than 1.  

The two last terms of equation (2) reflect, how dissipation delays and hinders the fission 
process. These effects can be seen in figure 1, where the time dependence of the fission 
decay width obtained by solving the FPE when the nucleus potential is approximated by a 
parabola [8] that is truncated at the fission barrier is shown. This is in fact not a very 
realistic picture of the potential but it leads to an analytical solution of the FPE that               

Figure 1: a) Fission decay with as function of time. The full line is the exact solution of  
the FPE for 238U, T = 2 MeV and β = 2⋅1021s-1 with the nucleus potential approximated by 
a parabola that is truncated at the fission barrier and whose stiftness is determined 
according to the Liquid-Drop Model [9]. The dashed-dotted line represents an 
approximation of Γf(t) by the function K⋅⋅⋅⋅ΓBW(1-exp(-2.3⋅t/τf)). The dashed line is another 
approximation based on a step function that jumps to the stationary value K⋅⋅⋅⋅ΓBW at the 
transient time τf.  



contains the main features of the numerical solution found by Grangé and Weidenmüller 
with a more realistic nuclear potential. The full line of figure 1 shows how the fission 
width is completely hindered at the beginning of the process, then it rises up, and at the 
time τf it reaches 90% of the stationary value given by K⋅Γf

BW. Nevertheless, the inclusion 
of such description for Γf(t) in a theoretical code is rather complicated, and most codes 
contain one of the following approximations: 

a) an exponential in growth function of the form ))/t3.2exp(1(K)t( f
BW

f τ−−Γ⋅=Γ  

b) a step function that switches from zero to the stationary value KBW
f ⋅Γ  at the time τf 

Both approximations are also represented in figure 1. The step function underestimates 
the fission decay width at the beginning of the process while the description a) 
overestimates it and presents a too steep rise at the initial time. In the next section we 
compare both descriptions and investigate how the deduced dissipation coefficient 
depends on the shape of Γf(t). 

3. Experiment 
Most of the experimental efforts to determine nuclear dissipation rely on the measurement 
of pre- and post-scission particle multiplicities and gamma spectra in fusion-fission and 
fast-fission reactions [10,11,12]. In such scenarios, a composite system with large 
deformation and high angular momentum is formed after the collision. The evolution of 
the system until it eventually fissions cannot be described by Grangé and Weidenmüller´s 
model since the initial composite system is highly deformed, which means that the fission 
degree of freedom has already some energy. In addition, the high angular momenta 
introduce further complications. Therefore, such reactions require sophisticated dynamical 
models like HICOL [13] to describe the process. Moreover, the inclusion of fluctuations 
in these models further represents a considerable difficulty. 
In the present work we present an experimental approach followed at GSI that overcomes 
these difficulties. This approach is based on the study of fission induced by very 
peripheral heavy-ion collisions at relativistic energies. A schematic picture of the reaction 
can be seen in figure 2.  
 
 
 
 
 
 
 
                                                          

 

Figure 2: Reaction mechanism for the production of fissioning nuclei based on very 
peripheral heavy-ion collisions at relativistic energies. 
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In the interaction of the projectile with the target, a certain number of nucleons are 
removed, inducing an intrinsic excitation in the fragmented projectile. For large impact 
parameters heavy prefragments produced might also decay by fission. In the reaction of 
one kind of beam with the target, an interval of large impact parameters is possible and 
hence a whole bunch of different fissioning systems are produced by an abrasion-type 
reaction [14]. Because of the high energy involved in the reaction, these fissioning nuclei 
have small shape distortions, low angular momentum (∆L<20� ) [15] and high intrinsic 
excitation energies of several hundreds of MeV [16]. Such initial conditions allow the 
application of Grangé and Weidenmüller´s model to describe the evolution of the system. 
Furthermore, the radioactive-beam facility at GSI enabled the investigation of a large 
number of short-lived nuclei from 234U down to 205At and several stable uranium isotopes, 
covering a very interesting range of fissilities. After the production stage from the 
fragmentation of 238U at 1 A GeV in a primary target and the identification stage [17], 
these nuclei are transmitted to the experimental set-up for fission studies, see figure 3. 
 

Figure 3: Experimental set-up for fission studies 
 
Fission is induced in inverse kinematics by collisions in a secondary target. The two 
fission fragments are focussed in forward direction and detected simultaneously in a 
double ionisation chamber. Because of the high energy of the fission fragments, they are 
fully stripped, and the energy loss in the chambers delivers a very accurate measurement 
of their charges. Figure 4 shows a scatter plot of the energy loss in the lower ionisation 
chamber versus the energy loss in the upper ionisation chamber for the reaction 238U 
primary beam at 1 A GeV in a CH2 target. The central peak inside the window 
corresponds to the fission events. In this way, fission events are discriminated against 
central collisions and random coincidences with beam particles. 
 
 
 



 

 
Figure 4: Scatter plot of the energy loss signals in the double IC. The applied condition 
selects the fission events Nf. 
 
4. Results 
 
The experimental set-up allows the measurement of total fission cross sections  and partial 
fission cross sections, that means, fission cross sections as a function of the sum of the 
charges of the two fission fragments, Z1 + Z2. These two types of cross sections are used 
to investigate the influences of the shape of Γf(t), and, in a preliminary attempt, to 
determine the dissipation coefficient and additional relevant model parameters like af /an 
and Bf. 
 

4.1 Influence of ΓΓΓΓf(t) on the determination of ββββ 

Figure 5 shows the nuclear-induced total fission cross sections of Rn, Ra, Th and U 
isotopes at 420 A MeV in a lead target as a function of the neutron number. The lead 
target also induces low-energy fission after electromagnetic interaction. These 
electromagnetic-induced fission events have been disentangled from the nuclear-induced 
ones as described in ref. [18]. The nuclear-induced cross sections of figure 5 show a soft 
dependence with the neutron number, varying in a similar way as the fissility parameter: 
in an isotopic chain the cross sections decrease slowly with increasing neutron number 
and increase strongly with the atomic number of the projectiles. There are two main 
effects that lead to the overall smooth dependence of the cross sections with the neutron 
number. One is the high excitation energy of the fissioning nuclei that attenuates the shell 
effects and the other is the variety of different nuclei with different fissilities and fission 
barriers that contributes to each data point. Consequently, each point reflects the average 
of the structure effects of all the fissioning systems produced in the fragmentation reaction 
of one type of projectile. The experimental data are compared with several calculations 
performed with the GSI abrasion-ablation Monte-Carlo code ABRABLA [7,19,20]. We 

Nf



implemented in this code the approximations a) and b) for Γf(t) [21,22] discussed in 
section 2. The full line of figure 5 corresponds to a calculation with the description b) 
  

Figure 5: Experimental total nuclear-induced fission cross sections (black dots) as a 
function of the neutron number for different Rn, Ra, Th and U isotopes impinging on a 
lead target at 420 A MeV. The data are compared with four calculations with different 
descriptions of Γf(t) and values of β. The dashed lines correspond to                             
Γf(t) = K⋅ΓBW(1-exp(-2.3⋅t/τf)) and β = 2⋅⋅⋅⋅1021s-1, the full lines to Γf(t) as a step function 
and β = 2⋅⋅⋅⋅1021s-1, the dotted lines to Γf(t) = K⋅ΓBW(1-exp(-2.3⋅t/τf)) and β = 9⋅⋅⋅⋅1021s-1, and 
the dashed-dotted lines to Γf(t) as a step function and β = 9⋅⋅⋅⋅1021s-1 

 
(step function) and β = 2⋅1021s-1. This combination shows a very good agreement with the 
data. However, the combination β = 2⋅1021s-1 and description a) (exponential in-grow) 
clearly overestimates the cross sections, dashed line in figure 4. The reason is that this 
description of Γf(t) allows for fission already at the very beginning of the deexcitation 
process, see figure 1. Nevertheless, the reproduction of the total fission cross sections with 
description a) is also possible if we increase the transient time by increasing β up to 
9⋅1021s-1, this is represented in figure 5 by the dotted line. Finally, the dashed-dotted line 
shows that the combination Γf(t) according to b) and β = 9⋅1021s-1 underestimates the 
cross sections because fission has been too long hindered. From this analysis we conclude 
that the deduced value of the dissipation coefficient β depends strongly on the function we 
use to describe Γf(t). Therefore, in order to compare different results for β it is necessary 
to specify the form that has been used for Γf(t).  
The partial fission cross sections for the reaction of 238U at 1 A GeV on CH2 are depicted 
in figure 6, full dots. Since the variable Z1+Z2 essentially represents the charge of the 
fissioning nucleus, these results show what we have already mentioned above, namely, 
that in the reaction of one kind of beam with a target a whole set of different fissioning 
elements from Z = 92 down to approximately Z = 65 are produced. The cross sections 
decrease with decreasing Z1+Z2 because the fissility decreases with decreasing charge of 
the fissioning nucleus.  These data are compared with the two calculations that reproduced 
the total fission cross sections of figure 5. In this case, only the combination step-function 
for describing Γf(t) and β = 2⋅1021s-1 fits the data, while description b) leads to important 



deviations from the data. The sensitivity of the experimental data suggests that a realistic 
treatment of the time dependent fission width Γf(t) is necessary in order to give a reliable 
value for the dissipation coefficient β. Because of the better agreement with the data, in 
the following all the calculations are done with Γf(t) as a step function according to 
description b). 

 
Figure 6: Experimental partial fission cross sections for 238U impinging on CH2 at 1 A 
GeV (full dots) in comparison with two calculations. The full line corresponds to a 
calculation done with Γf(t) as a step function and β = 2⋅1021s-1, and the dotted line to a 
calculation with Γf(t) = K⋅ΓBW(1-exp(-2.3⋅t/τf)) and β = 9⋅1021s-1 
 

4.2 Preliminary attempt to determine af /an and Bf 

References [6,7] are two examples of elaborated theoretical estimations of Bf and af /an, 
respectively. However, the value of af /an is difficult to determine experimentally, and 
some theoretical studies predict a dependence of Bf from temperature [23,24]. Even more, 
the deduced value of the dissipation coefficient β itself depends on the values used for Bf 
and  af /an. Consequently, it is interesting to investigate if our experimental observables 
can also be used to determine these other model parameters. We proceeded in the 
following way: For a given combination of the parameters af /an and Bf /Bf

Sierk, where 
Bf

Sierk are the values of the fission barriers according to reference [6], the value of β is 
determined so that the total fission cross sections of figure 5 are reproduced. There are a 
priori certain values of af /an and Bf that we do not consider: Since all the theoretical 
predictions point to a reduction of the fission barriers due to temperature, the tentative 
values of Bf /Bf

Sierk should be always smaller than one, and due to the larger deformation at 
the saddle point af /an should be always larger than one. There are many different 
combinations of af /an, Bf, and β that reproduce the experimental total fission cross 
sections of figure 5. Five examples of these combinations are listed in table 1. However, 



only the first of these combinations, the one with af /an and Bf according to the theoretical 
predictions and β = 2⋅1021s-1 reproduces the partial fission cross sections, see figure 7.  
 

af /an Bf /Bf
Sierk ββββ 

Reference [7] 1 2⋅1021s-1 
1 0.8 2⋅1021s-1 

Reference [7] 0.8 4⋅1021s-1 
1 0.6 9⋅1021s-1 

1.14 1 9⋅1021s-1 
 
Table 1: Examples of different combinations of model parameters that reproduce the total 
fission cross sections 
 

Figure 7: Experimental partial fission cross sections for 238U at 1 A GeV on CH2 in 
comparison with the five combinations listed in table 1. The thick full line represents the 
first combination, the dashed-dotted line the second combination, the thin full line the 
third, the dashed line the fourth and the dotted line the fifth combination. 

 
All the calculations fit to the experimental data for large values of Z1+Z2 (from        
Z1+Z2 = 92 to approximately Z1+Z2 = 84), these points correspond to the heaviest 
fissioning systems which have low excitation energies. For lower values Z1+Z2 the 
systems acquire more and more excitation energy. At high excitation energies, neutron 
evaporation is a very fast process, so that large fission delays τf will lead to a considerable 
reduction of the fission cross sections. The solution of the FPE [3] gives a minimum of  
the transient time τf  ≅ 2⋅10-21s at β  ≅ 2⋅1021s-1. This explains why all the calculations with 
β >2⋅1021s-1 result in too low cross sections for the lightest fissioning elements. In the case 
of the second combination of table 1, the cross sections are lower than the experimental 



values despite the corresponding minimum value for τf. This is mainly due to the lower 
value of af /an = 1 that leads to smaller fission probabilities at high excitation energies.  
Figure 8 shows these results schematically. The x-axis represents the values of af /an and 
the y-axis the values of Bf /Bf

Sierk. The points correspond to the five combinations tested 
and specified in table 1, and the lines describe all the combinations of the two parameters 
af /an and Bf that lead to the same value of β. 
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Conclusions 
A new and very appropriate approach for the investigation of dissipation in fission has 
been presented. In this approach performed at GSI, fission is induced by peripheral heavy-
ion collisions at relativistic energies. The initial conditions of the fissioning nuclei in such 
reactions, namely high excitation energy, small shape distortion, and low angular 
momentum, fit to the initial conditions assumed by Grangé and Weidenmüller in their 
theoretical model. This represents important advantages with respect to the more 
commonly used approaches, and relevant information on dissipation can be extracted. We 
have shown that the deduced dissipation coefficient β depends strongly on the description 
used for the time-dependent fission decay width Γf(t). The most widely used description 
of Γf(t), an exponential in-grow function, does not reproduce our data, because it fails to 
describe the essential feature of the solution of the Fokker-Planck equation, namely the 
practically complete suppression of fission up to the transient time. Our experimental 
observables are also sensitive to the ratio of the level density parameters, af /an, and the 
fission barriers Bf .  A preliminary attempt to determine these parameters as well as β has 
lead to a confirmation of the values of Bf and af /an predicted by [6] and [7], respectively. 
For the dissipation coefficient we obtain a value of β =2⋅1021s-1 that corresponds to a 
transient time  τf ≅2⋅10-21s which is in agreement with some latest works done in this field 
[25,26]. 
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