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INTRODUCTION
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For more violent collisions the evaporation 

starts at lower excitation energies !!!
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All pre-fragments start the evaporation

cascade at a constant temperature!!!
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	investigation of

light clusters

(multifragmentation)
	investigation of

heavy clusters

(fragmentation)


( The formation of light clusters (multi-fragmentation) has widely been exploited to search for thermal instabilities of excited nuclei

( Light clusters might be emitted by liquid and gaseous phase. - Heavy residues are clearly associated to the liquid phase.

( The identification of heavy residues needs specific experimental tools.

OUTLOOK 

1 Experiments at FRS of GSI

2 Results

3 Sequential decay or                   simultaneous break-up?

4 Idea behind the isospin thermometer

5 Comparison with a three stage model

6 Comparison with SMM calculations

7 Possible scenario of mid-peripheral high-energy nucleus-nucleus collisions

8 Conclusions

THE EXPERIMENT AT THE FRS AT GSI




velocity is calculated from B(: 
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very precise evaluation!

DISCRIMINATION OF FISSION EVENTS


Systematic survey on residual nuclide production
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6000 individual data points!

Basic data for 

· EURISOL and GSI project

· Intensities of secondary beams

· HINDAS

· Nuclear data for incineration of nuclear waste

From electromagnetic-induced fission 
to fragmentation of 238U
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· Fission from excitations of GDR and nuclear collisions

· Fragmentation in high-energy nuclear collisions

Neutron excess reflects excitation energy induced.

EXPERIMENTAL RESULTS


Data: 238U + 208Pb (1 A GeV)

   (Only fragmentation, fission discharged)
EPAX: a systematics of isotopic cross sections in projectile fragmentation 

             (K. Sümmerer, B. Blank, Phys. Rev. C (2000) 034607)

EPAX is based on the hypothesis of 

limiting fragmentation
Mean N/Z of fragments (fission discharged)
— stability line

— EPAX, projectile = Au

— EPAX, projectile = Fe

(
800 A(MeV Au + p - F.Rejmund NPA 683 (2001)
(
414 A(MeV Fe + p - W.R.Webber AJ 508 (1998)

· 1000 A(MeV U + Pb - T.Enqvist NPA 658 (1999)

· 1000 A(MeV U + Ti - M.V. Ricciardi's thesis (2002)

Why do some data agree with EPAX

and some deviate?
What can we learn from ALADIN data?


· Separation between multifragmentation and "spallation".

· Z>20 is the heaviest fragment in the reaction.

	Consolidated knowledge

· Lighter residues originate from more violent collisions
· More violent collisions ( larger excitation energy (ABRASION PICTURE)
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PRINCIPLE OF THE ISOSPIN THERMOMETER

Simplifying hypothesises: 

· only n-evaporation

· 15 MeV consumed for every evaporated n

· the evaporation stops when <Nfinal>/Z = 1.25



ABRASION

+

SIMULTANEOUS BREAK-UP

+

SEQUENTIAL DECAY


COMPARISON WITH A THREE-STAGE MODEL

ABRASION / (BREAK-UP) / EVAPORATION

… complete but simplified…



 COMPARISON WITH SMM CALCULATIONS

… not complete but more sophisticated…


A SHARP LIMITING TEMPERATURE?

( 1 A GeV 238U on Ti   measured at FRS

( 1 A GeV 238U on Pb   measured at FRS
Three-stage model

SMM (arbitray normalised)
 POSSIBLE SCENARIO OF MID-PERIPHERAL HIGH-ENERGY NUCLEUS-NUCLEUS COLLISIONS
CONCLUSIONS

( Some heavy residues produced in relativistic nucleus-nucleus collisions are unexpectedly neutron-rich

( This neutron excess was interpreted as an indication for a simultaneous-break-up phase

( The mean N/Z-ratio of the final elements can be used in combination with statistical-model codes in order to deduce the freeze-out temperature after break up (“isospin thermometer”)

( The average temperature of the break-up configuration at freeze out was determined to
T ≈ 5 MeV

( Consequence:  The probability for an equilibrated compound nucleus to exist drops strongly above a limiting temperature of 5 MeV

http://www-wnt.gsi.de/kschmidt/talks.htm
?





IDEA BEHIND LIMITING FRAGMENTATION





The Isospin Thermometer -


A New Tool to Determine �the Freeze-out Temperature�of Heavy Residues after�Relativistic Nucleon-Nucleon�Collisions








T = 5 MeV





 �
chain of processes !





"evaporation corridor"


or


"attractor line"





?















































( 1 A GeV 238U on Ti   measured at FRS


( 1 A GeV 238U on Pb   measured at FRS
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