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Importance of fission
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What do we need?

- Fission probabilities => fission barriers, masses, nuclear level
density

- Fission-fragment distributions

Challenge for experiment and theory
- Large-scale collective motion

- Nuclear structure effects (shell effects, pairing...) at
large deformations

- Fission dynamics

- All this for nuclei not accessible in laboratory



Fission barriers

Strong influence on the fission
contribution to the r-process
nucleosynthesis




Experimental information

Relative
uncertainty:
>10-2

Available data on fission barriers, Z > 80 (RIPL-2 library)



Experimental information

Fission barriers
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Experiment - Difficulties
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* Recently, important progress on calculating the potential surface using
microscopic approach (e.g. groups from Brussels, Goriely et al; Bruyeres-
le-Chatel, Goutte et al; Madrid, Pérez and Robledo; ...):

- Way to go!
- But, not always precise enough and still very time consuming

» Another approach = microscopic-macroscopic models (e.g. Maller et al;
Myers and Swiatecki; Mamdouh et al; ...)

- Common for all approaches:

Limited experimental information on the height of the fission barrier =
in any theoretical model the constraint on the parameters defining the
dependence of the fission barrier on neutron excess is rather weak.



Open problem

Limited experimental information on the height of the fission barrier

Fission-barrier heights for U isotopes
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Predictions of theoretical models are examined by means of a detailed
analysis of the isotopic trends of ground-state and saddle-point masses.
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oU,,, <> Empirical saddle-point shell-correction energy

1. Shell corrections have local character

2. 8U,,, should be very small (e.g Myers and Swiatecki PRC 60 (1999);
Siwek-Wilczynska and Skwira, PRC 72 (2005)) )
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Studied models

1) Droplet model (DM) [Myers 19771, which is a basis of often used results of
the Howard-Méller fission-barrier calculations [Howard&Maller 1980]

2) Finite-range liquid drop model (FRLDM) [Sierk 1986, Méller et al 1995]

3) Thomas-Fermi model (TF) [Myers and Swiatecki 1996, 1999]
4) Extended Thomas-Fermi model (ETF) [Mamdouh et al. 2001]

W.D. Myers, ..Droplet Model of Atomic Nuclei®, 1977 IFI/Plenum
W.M. Howard and P. Méller, ADNDT 25 (1980) 219.

A. Sierk, PRC33 (1986) 2039.

P. Moller et al, ADNDT 59 (1995) 185.

W.D. Myers and W.J. Swiatecki, NPA 601( 1996) 141

W.D. Myers and W.J. Swiatecki, PRC 60 (1999) 0 14606-1

A. Mamdouh et al, NPA 679 (2001) 337



A, / MeV

0.4

0.2

0.0

Slopes of dU,, as a function of the neutron excess

T

T I I T

N

} _pﬂ/._|_—| =

-0.2 F 7

i
|
1

¢ £ 3

1 ® DM, A, = 0.16£0.02 MeV

{ a TF, A, =-0.003+0.010 MeV
| m FRLDM, A, = -0.03%0.01 MeV
—1 ¢ ETF, A, = -0.1820.02 MeV

m  Stable nuclei
B Studied nuclei

126

i 1l
H
I
e
|
|
1M =
5
\ h
= '——;*'&-I—-—l
-
N — >

90 91 92 93 94 95 96 97 98 99

= The most realistic predictions are expected from the TF model and
the FRLD model

= Further efforts needed for the saddle-point mass predictions of the
droplet model and the extended Thomas-Fermi model

Keli¢ and Schmidt, PLB 643 (2006)



Mass and charge division in fission




Experimental information
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How well can we describe exp data?

—> Empirical systematics - Problem is often too complex

microscopic description of fission:

—Theoretical model - Way to go, but not always precise enough and
still very time consuming. Encouraging progress for a full

Time-dependent HF
calculations with GCM:

Goutte et al., PRC 71 (2005)
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FIG. 14, Theoretical mass distributions (solid lines ) are compared
with the Wahl evaluations of neutron-induced fission of 2% [24]
{dashed lines). Excitation energies of the compound U nucleus
measured above the barrier are (a) E = 2.4 MeV, (b) E = 1.1 Me'V.

—> Semi-empirical models - Theory-guided systematics



Macroscopic-microscopic approach

- Transition from single-humped to double-humped explained by
macroscopic (fissionning nucleus) and microscopic (hascent fragments)
properties of the potential-energy landscape near the saddle point.
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- For each fission fragment we geft:
- Mass
- Charge
- Velocity
- Excitation energy



Comparison with data

Fission of secondary beams after the EM excitation:

black - experiment (Schmidt et al, NPA 665 (2000))
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Applications
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FF masses and nuclear charges, number of emitted pre- and post-
scission particles used as input for r-process network calculations
= talk by Gabriel Martinez-Pinedo



Conclusions

- Further experimental and theoretical efforts are needed

- Important progress have been made in microscopic description of
fission, but for applications one still has to rely on microscopic-
macroscopic models

- Need for more precise and new experimental data using new
techniques and methods = basis for further developments in
theory
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Additional slides




What do we need?

Different entrance channels:

n-induced fission
(e.g. Panov et al, NPA 747)

beta-delayed fission
(e.g. Staudt and Klapdor-Kleingrothaus, NPA 549; Panov et al, NPA 747)

neutrino-induced fission
(e.g. Kolbe et al, PRL 92; Keli¢, Zinner et al, PLB 616)

spontaneous fission
(e.g. Ohnishi, Prog. Theor. Phys. 47)



Experiment -

Difficulties

Extraction of barrier parameters:

Requires assumptions on level densities.
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Theoretical difficulties

Dimensionality (Méller et al, PRL 92) and symmetries (Bjernholm and
Lynn, Rev. Mod. Phys. 52) of the considered deformation space are very

important! SYMMETRIC DEFORMATION, y
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Example for uranium

oU,,,as a function of a neutron number

Uranium isotopes
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A realistic macroscopic model should give almost a zero slope!



Ternary fission

Ternary fission = less than 1% of a binary fission
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Theory

- Strutinsky-type calculations of the potential-energy landscape (e.g. P. Méller)
+ Good qualitative overview on multimodal character of fission.
- No quantitative predictions for fission yields.
- No dynamics
- Statistical scission-point models (e.g. Fong, Wilkins et al.)
+ Quantitative predictions for fission yields.
- No memory on dynamics from saddle to scission.
- Statistical saddle-point models (e.g. Duijvestijn et al.)
+ Quantitative predictions for fission yields.
- Neglecting dynamics from saddle to scission.
- Uncertainty on potential energy leads to large uncertainties in the yields.
- Time-dependent Hartree-Fock calculations with GCM (Goutte)
+ Dynamical and microscopic approach.
- No dissipation included.

- High computational effort.



How well do we understand fission?

Influence of nuclear structure (shell corrections, pairing, ...)

Fission of the secondary beam ??6Th (e.m. induced)
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scale collective motion of
atomic nuclei, Brolo, 1996

Also dynamical properties (e.g. viscosity) play important rolel



	Importance of fission
	What do we need?
	Fission barriers
	Experimental information
	Experimental information
	Experiment - Difficulties
	Theory
	Open problem
	Idea
	Idea
	Studied models
	Results
	Mass and charge division in fission
	Experimental information
	How well can we describe exp data?
	Macroscopic-microscopic approach
	Comparison with data
	Applications
	Conclusions
	Additional slides
	What do we need?
	Experiment - Difficulties
	Theoretical difficulties
	Example for uranium
	Ternary fission
	Theory
	How well do we understand fission?

