
 

 

 
 

 

 

ABLA07 - Towards a Complete Description of the Decay Channels of a Nuclear System 
from Spontaneous Fission to Multifragmentation 

A. KELIĆ, M.V. RICCIARDI, K.-H. SCHMIDT 

Gesellschaft für Schwerionenforschung, 
Darmstadt, Germany 

Abstract. The physics and the technical algorithms of the statistical de-excitation code ABLA07 are 
documented. The new developments of ABLA07 have been guided by the empirical knowledge 
obtained in a recent experimental campaign on the nuclide distributions measured at GSI, Darmstadt.  
Besides distinct signatures of very asymmetric binary splits, lighter systems show clear features of 
multifragmentation, while heavy systems reveal the influence of dynamics and microscopic structure 
on the fission process. ABLA07 includes elaborate but efficient descriptions of all these processes, 
with one set of the model parameters fixed for all systems and all energies. 

1. Introduction 

Nuclear reactions represent an excellent tool to study static and dynamical properties of 
nuclear matter. For example, while fission at low excitation energies can be used to extract 
information on the heights and curvatures of the fission barriers [1] or on pairing and shell 
correlations at large deformations [2,3], fission at high excitation energies (above ~100 MeV) 
can give insight into dissipative properties of nuclear matter, see e.g. [4]. Other examples are 
spallation reactions and heavy-ion reactions at and above the Fermi energy, which are best 
suited for studying thermal instabilities and the liquid-gas phase transition in nuclear matter 
[5,6,7,8,9,10]. Unfortunately, most of the needed information cannot be directly obtained 
from the experimental observables. Usually, one needs to use some reaction model, and only 
by comparing the predictions of a considered model with measured observables one can gain 
more insight into the physical processes. For this purpose, of course, reaction models as 
realistic as possible are mandatory.  

In recent years, reaction models became important not only for the basic research but also for 
different applications. Fusion, fission, fragmentation or spallation reactions are used in order 
to produce beams of secondary, radioactive ions. Spallation reactions are used as a neutron 
source [11,12] and considered for different applications such as for example nuclear-waste 
management [13,14]. To these purposes, many facilities are being built or being planned all 
around the world. For the proper functioning of these facilities, cross sections of different 
particles produced in considered nuclear reactions have to be known. Due to the variety of the 
involved systems, i.e. different target/projectile/beam-energy combinations, not all production 
cross sections can be measured, and one has to rely on model calculations. Therefore, reliable 
and fast reaction models are also mandatory for technological applications.   

Usually, nuclear-reaction models consist of two stages: In the first stage, it is assumed that 
due to the interaction between a target and a projectile nucleus, an excited thermally 
equilibrated nuclear system is formed. After the thermalised system is formed, in the second 
stage its decay is described in the frame of the statistical model [15]. Usually, two realisations 
of the statistical model are employed: The Weisskopf-Ewing approach [16] and the Hauser-
Feshbach approach [17]. While in the former a direct consideration of angular momentum and 
parity is neglected, in the latter approach they are explicitly taken into account. Many 
different deexcitation codes based on these two approaches have been developed. They 
mostly differ according to different descriptions of the physics concepts involved, e.g. level 
density, nuclear potential, nuclear viscosity or number of considered decay channels. In order 
to be used for the description of the deexcitation process of residues formed in different types 



 

of interactions (i.e. different target/projectile/energy combinations) a deexcitation code has to 
be adapted to some specific needs:  

• A consistent treatment of level densities as a function of excitation energy and nuclear 
shape is mandatory. The treatments of shell effects [18] and collective excitations [19] 
are particularly important. 

• The dynamics of the fission process and the onset of thermal instabilities at the highest 
temperatures have to be considered.  

• Modelling of fission requires considering a large variety of fissioning nuclei in a wide 
range of excitation energies. Available empirical formulations of nuclide distributions 
in fission of specific nuclei should be replaced by a model, which is based on more 
fundamental properties, like the potential-energy landscape around saddle and 
scission.  

• For application purposes, inclusion in complex transport codes demands for short 
computing times. 

In the following, we will describe the deexcitation code ABLA07, which complies with the 
above-mentioned requirements. 

2. Description of the model 

ABLA07 is a dynamical code that describes the de-excitation of the thermalised system by 
simultaneous break-up, particle emission and fission. Simultaneous break-up is considered as 
the cracking of the hot nucleus into several fragments due to thermal instabilities. The 
description of particle evaporation is based on the Weißkopf-Ewing formalism [20], while the 
fission decay width is calculated taking into account dynamical effects [21]. The basic 
ingredients of the model are1: 

1. Emission of neutrons, light charged particles (Z=1, 2), intermediate-mass fragments 
IMF (Z>2) and gamma rays is considered. 

2. In calculating the particle decay widths the following effects are considered: 

• Energy dependent inverse cross sections based on nuclear potential using the 
ingoing-wave boundary condition model [22].  

• Barriers for charged particles are calculated using the Bass potential [23]. 

• Thermal expansion of the source [24] is taken into account. 

• Change of angular momentum due to particle emission is considered. 

3. The fission decay width is described by including:  

• An analytical time-dependent approach [25,26] to the solution of the Fokker-
Planck equation, 

___________________________________________________________________________ 
1 Comparison with the previous version of the model ABLA is given in Annex I. 



 

 

• The influence of the initial deformation on the fission decay width, 

• The double-humped structure in the fission barriers of actinides, 

• Symmetry classes in low-energy fission. 

4. Particle emission on different stages, i.e. between ground state and saddle point, 
between the saddle and scission point, and from two separate fission fragments, of the 
fission process is calculated separately. 

5. Kinetic-energy spectra of the emitted particles are directly calculated from the inverse 
cross sections. 

6. A stage of simultaneous break-up [9] in the decay of hot excited systems is explicitly 
treated. 

In the following, these different steps will be discussed in more details. 

2.1 Particle emission 

Following the Weißkopf-Ewing formalism [20,27], the decay width of a specific initial 
nucleus, characterised by its excitation energy Ei into a daughter nucleus with excitation 
energy Ef by emission of particle ν with kinetic energy εν is given as: 
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In the above equation, sν is the spin of the emitted particle, ρi and ρf are the level densities in 
the initial and the daughter nucleus, respectively, σc is the cross section for the inverse 
process, Bν  is the Coulomb barrier for charged-particle emission and mν the mass of the 
emitted particle. 

In order to calculate the probability of a certain decay channel, i.e. ∑ΓΓ= iP /νν , one needs, 
therefore, several important parameters: the level density, the Coulomb barrier and the inverse 
cross section. Below, we discuss them in more details. 

2.1.1.  Level density 

The total level density used in Eq. (1) is calculated as the product of the intrinsic level density 
ρin(E) and the vibrational and rotational enhancement factors, Kvib(Ecorr)  and Krot(Ecorr), 
respectively [28]: 

ρ(E) = ρin(E)⋅Kvib(E)⋅Krot(E).     (2) 

The intrinsic density of excited states, ρin, is calculated with the well-known Fermi-gas 
formula:  
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with the exponent S: 

 ( ) ( )( )effeffeffcorr EhPEkUEaEaS ⋅+⋅+⋅⋅=⋅⋅= δδ~2~2
,
  (4) 

and the asymptotic level-density parameter ã as given in Ref. [18]: 

32095.0073.0~ ABAa S ⋅⋅+⋅= ,    (5) 

where A is the mass of the nucleus, and Bs is the ratio between the surface of the deformed 
nucleus and a spherical nucleus. δU is the shell-correction energy, which is for the ground 
state calculated according to Ref. [29]. At the fission saddle point, the shell-correction energy 
is assumed to be negligible [30,31]. The function k(Eeff) describes the damping of the shell 
effect with excitation energy, and is calculated according to Ref. [18] as k(Eeff) = 1 – exp(-
γEeff), with the parameter γ determined by γ = ã / (0.4·A4/3) [32].  

The parameter δP of equation (4), which is identical to the pairing condensation energy in 
odd-odd nuclei, is calculated as: 

  ∆⋅+⋅∆⋅−= 2
4
1 2 gPδ ,     (6) 

with an average pairing gap  ∆ = A/12 , and the single-particle level density at the Fermi 
energy g = 6·ã /π2. The function h(Eeff) parameterises the superfluid phase transition [33] at 
the critical energy Ecrit = 10 MeV [34]: 
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The effective energy Eeff is shifted with respect to the excitation energy E to accommodate for 
the different energies of even-even, odd-mass, and odd-odd nuclei: 

     Eeff = E  odd Z – odd N 

     Eeff = E - ∆  odd A 

     Eeff = E - 2∆ even Z – even N. 

In order to calculate the intrinsic level density at very low excitation energies, we switch from 
the Fermi-gas level density to the constant-temperature level density [35]. The calculation is 
based on the work performed in Ref. [36], where the values of the parameters of the constant-
temperature level density approach were obtained from the simultaneous analysis of the 
neutron resonances and the low-lying levels in the framework of the Gilbert-Cameron 
approach [35]. 



 

 

 

Fig. 1. Intrinsic level density ρin(E) for three nuclei – 242Cf, 241Bk and 240Bk – calculated in 
ABLA07 using combined Fermi-gas – constant-temperature level density approach. 

 

As it was shown in Ref. [19], collective excitations can contribute considerably to the total 
nuclear level density. In deformed nuclei, the most important contribution to the collective 
enhancement of the level density originates from rotational bands, while in spherical nuclei 
the collective enhancement is caused by vibrational excitations.  

In ABLA07, the contribution of collective excitations to the level density is described in the 
following way (for more details, see Ref. [19]): For nuclei with a quadrupole deformation |β2| 
> 0.15, the rotational enhancement factor Krot(Ecorr) is calculated in terms of the spin-cutoff 
parameter ⊥σ : 
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where Ecorr is defined in Eq. (4), ( )3/1 2
2

05
2 β+⋅⋅=ℑ⊥ RAm  is the rigid-body moment of 

inertia perpendicular to the symmetry axis, and m0 is the mass unit. The ground-state 
quadrupole deformation β2 is taken from the finite-range liquid-drop model including 
microscopic corrections [29], while the saddle-point deformation is taken from the liquid-drop 
model as given in Ref. [37]. The damping of the collective modes with increasing excitation 
energy is described by a Fermi function f(E) with parameters Ec = 40 MeV and dc = 10 MeV. 
The vibrational enhancement for spherical nuclei is generally smaller than the rotational 
enhancement for deformed nuclei. For nuclei with a quadrupole deformation |β2| < 0.15, the 
vibrational enhancement factor is calculated by using the same formula as for the rotational 
enhancement (Eq. (8)), but with the spin-cutoff parameter which is, in order to simulate the 
vibrational motion, calculated assuming irrotational flow: 222' 70 ⊥⊥ ⋅⋅= σβσ eff , where ⊥σ  is 



 

given by Eq. (8a), and βeff
  is a dynamical deformation parameter: βeff

  = 0.022 + 0.003·∆N + 
0.005·∆Z; ∆N and ∆Z are the absolute values of the number of neutrons and protons, 
respectively, above or below the nearest shell closure.  

2.1.2  Influence of angular momentum 

In the standard Weisskopf-Ewing approach, the change of angular momentum in the 
evaporation process due to particle emission is not treated. To overcome this limitation, we 
have developed a dedicated formalism, which calculates the distribution of orbital angular 
momentum in the emission of nucleons and fragments from excited nuclei with finite angular 
momentum. 

The emitting (mother) nucleus with mass number Am has the angular momentum lm and the 
excitation energy Em

*. After the emission of a fragment with mass number Af, separation 
energy Sf , kinetic energy Kf, excitation energy Ef

* and angular momentum lf , the daughter 
nucleus with mass number Ad, angular momentum ld and excitation energy Ed

* is formed. 

In the classical approximation, the probability for the emission of the fragment with a given 
orbital angular momentum is determined by the phase space available for the daughter 
nucleus and the fragment after the fragment emission. Due to energy conservation, we have 
the following relation:  
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Here, only rot
dE  , rot

fE  and orbE  depend on the orbital angular momentum of the fragment. The 
optimum combination of final intrinsic and orbital angular momentum is defined by the 
collinear combination of the angular momenta: 

|)(||||| fdmorb llll +−= , 

which leads to the final configuration with the largest number of states in the final nucleus.  

The number of final states is approximately given by: 
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Renaming (ld + lf) = lfinal, we get 
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-  The most probable value of the orbital momentum: 

To obtain the most probable value of lorb we search for the maximum of the function in Eq. 
(11). The full distribution given by Eq. (11) is well approximated by a Gaussian function, 
whose width is related to the second derivative of the distribution in (11). 



 

 

For relativistic nucleus-nucleus and nucleon-nucleus collisions, mostly considered here, the 
value of lfinal is expected to be very close to lm. This is why we expand the above function 
around lm: 
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Since orbm Θ>>Θ , we can approximate: 
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The maximum of this function is given by requiring the first derivative to be zero: 
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From this we determine the optimum value of lorb: 
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- The width of the orbital-momentum distribution: 

To estimate the width of the orbital-momentum distribution in one evaporation step, we first 
write down the second derivative of ln(ρ): 
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From this we conclude that the orbital-momentum distribution can be approximated by 
Gaussian with the standard deviation:  
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In an evaporation code, the emission of a particle induces a change in angular momentum of 
the mother nucleus. This change is calculated by randomly picking the angular-momentum 
value from a Gaussian distribution with the mean value lorb (Eq. (12)) and the standard 
deviation σ (Eq.(13)). 

The most severe approximation in the above consideration is the restriction to collinear 
angular momenta in the evaporation process. This approximation is most crucial for the 
estimation of the widths of the orbital angular-momentum distribution, which may be 
underestimated. However, the most important value for the evaporation process is the most 
probable orbital angular momentum, which is only little affected, due to the dominant 
influence of the strong energy dependence of the level density.  

2.1.3. Inverse cross sections 

In calculating the inverse cross section for the emission of particles one has to consider 
several effects: The existence of the Coulomb barrier for charged particles (especially at low 
energy), the tunnelling through it (especially for light particles), and the energy-dependent 
quantum-mechanical cross section.  

At energies well above the Coulomb barrier the shape of the barrier does not play any role. σc 
is then calculated without taking into account the tunnelling:  
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where µ is the relative mass (= M1·M2/(M1+M2)) and Ecm = εν· (A1-A2)/A1. Rλ  is obtained for 
the square-well potential and is responsible for the dependence of the capture cross section on 
the particle energy2.  

___________________________________________________________________________ 
2 For low particle kinetic energy the wavelength associated to the particle becomes comparable to the nuclear 
dimensions, which results in the dependence of the cross section on particle energy. 



 

 

2.1.4. Barriers for charged-particle emission 

To calculate the Coulomb barrier, we use the nuclear potential for l = 0 (V(r) = VN(r) + VC(r)) 
and then numerically search for the position of the maximum that corresponds to the barrier.  

- The empirical nuclear potential of R. Bass [38,39]:  
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with the parameters: 

 A = 0.333 MeV-1 fm,  B = 0.007 MeV-1 fm, 

 d1 = 3.5 fm,   d2 = 0.65 fm. 

C1 and C2 are the half-density radii of the daughter nucleus and emitted particle, respectively, 
calculated as: 
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The variable s = r – C1 – C2 gives the distance between the two surfaces based on half-density 
radii. 

- Coulomb potential [39]: 
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Please note that inclusion of Eqs. (14-16) into the expression (1) for the particle decay width 
implies the use of numerical tools for solving the integral in Eq. (1) which can considerably 
increase the computational time. In order to overcome this problem, we have approximated 
the integrand in the Eq. (1) with a function, which allows us to analytically solve the integral. 
Details are given in Annex B.   

2.1.5.  Tunnelling through the barrier 

At energies below and just above the Coulomb barrier, the tunnelling of charged particles 
through the barrier plays an important role, and, consequently, the expression for the inverse 



 

cross section given by Eq. (14) is not any more applicable. In order to incorporate the effect of 
the tunnelling through the potential barrier, we follow the work done by Avishai in Ref. [40]. 
He considered two different energy ranges for calculating the inverse cross sections: 

- Energy below the Coulomb barrier: 

Avishai [40] showed that the nucleus-nucleus fusion cross section at sub-barrier energies can 
be predicted by the simple theory of Wong based on the barrier-penetration technique [41], 
where it is assumed that the reaction occurs whenever the two nuclei have penetrated through 
the potential barrier. For every angular momentum, i.e. every impact parameter, the 
penetration probability can be calculated by the Hill-Wheeler formula [42], after 
approximating the shape of the barrier by an inverted (half) parabola plus a Coulomb slope 
(V~1/r).  

If Rl is the position of the top of the barrier, El is the value of the effective interaction at its 
maximum and Lωh the curvature, the transmission coefficient for angular momentum l can be 
calculated as:  
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C(E) express the penetration through the Coulomb part. Once the penetration coefficients of 
Eq. (17) are summed over all the possible angular momenta, one obtains the inverse cross 
section:  
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- Energy just above the Coulomb barrier: 

When the energy is just above the barrier, Avishai's formulation reduces to Wong's prediction 
[41] in which the barrier is assumed to have the form of an inverted (full) parabola. The cross 
section is in this case not so much affected by the Coulomb slope and the calculation of the 
tunnelling only through the (full) parabola gives a satisfactory result:  
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Again, inclusion of expressions (18-19) into Eq. (1) would imply the use of numerical tools 
for solving the integral. To overcome this problem, in ABLA07 the effect of tunnelling on the 
particle decay width has been determined by fitting the numerical results of a complete 
calculation with the Avishei formula for the transmission coefficients: Firstly, the numerical 
solution of Eq. (1) is obtained without considering the tunnelling, resulting in the so-called 
classical decay width Γclass. In the second step, Eq. (1) is integrated numerically with taking 
the tunnelling into account; this results in the so-called exact particle decay width Γexact. The 
ratio Γexact / Γclass is shown in Fig. 2 for several different systems. This ratio is then fitted, and 
the obtained fitting function f(Ef, Af, Aν,V) is used in ABLA07, so that the exact solution of 
Eq. (1) can be approximated by  ΓABLA = f(Ef, Af, Aν,V) ·Γclass.  



 

 

 

Fig. 2. Enhancement of the particle decay width due to tunnelling through the potential 
barrier for different particles and emitting systems (different symbols) together with a 
functional form given by Eq. (17) (full red line). 

The function f(Ef, Af, Aν,V) that fits best the ratio Γexact / Γclass has the following form:  
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where x is the ratio between the temperature (T) of the daughter nucleus (Af) and the energy 
( ωh ) of the inverse parabola at the potential barrier (V), divided by the forth root of the 
reduced mass (µ) of the system. ωh is calculated from the second derivative of the potential 
given in Section II.1.4. 

2.1.6.  Expansion 

In order to correctly describe the de-excitation of a heated nucleus, changes in the nuclear 
density of the compound nucleus with thermal energy have to be considered. A nucleus tends 
to expand when it is heated, until it reaches a status of thermal equilibrium, where the level 
density is maximal for the given total excitation energy.  The increase of volume has three 
possible consequences which may affect the following de-excitation process: Firstly, it lowers 
the Coulomb barrier. Secondly, it changes the level density of the compound nucleus. Thirdly, 
and most important, the nucleus can enter the region of spinodal instabilities. In this section 
we discuss the first and second aspects, while the third aspect will be discussed in section III. 

The radius of the expanded nucleus is derived from the analytical expression for the density at 
thermal equilibrium presented in Ref. [24]. There, the decrease of the density, oeq ρρ , 
relatively to the normal density of the nucleus, is calculated according to the following 
formula: 
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where AEtottot
** =ε  is the excitation energy per nucleon ( *

totE  is the total excitation energy of 
the system of mass number A) and bε  is the ground-state binding energy per nucleon of the 
system. Assuming a spherical nucleus, we obtain the relative increase of the radius, oeq rr , 
due to thermal expansion:  
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The elongated nuclear radius at thermal equilibrium is used to calculate the nuclear potential 
(using the empirical formula of Bass [38]), and, finally the reduced Coulomb barrier.  

The second effect of the thermal expansion is to change the level density. The level density is 
related to the thermal energy through the level density parameter, a. The dependence of a on 
the nuclear matter density is given by the Fermi-gas model: 
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In Ref. [24] it is demonstrated that the above equation can apply for finite nuclei; specifically:  
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In reality, we do not make use of the above formula (24) in ABLA07. Since the deexcitation 
cascade is ruled by the decay widths, which in turn depend on the relative weight of the level 
densities of the mother and daughter nuclei, the change on the density of levels due to thermal 
expansion will not reflect perceptibly on the decay widths. This is particularly true for heavy 
nuclei – where the difference in level density between mother and daughter is minimal – and 
at high excitation energy – where the density of levels is anyhow very high. For this reason, 
the effect of thermal expansion on the level density is not considered in ABLA07. 

As an example of ideas described in the above sections, we show in Fig. 3 a comparison 
between calculated and measured production cross sections of 3He and 4He in proton-induced 
reaction on 56Fe at several proton-beam energies. Calculations show only the contribution of 
the particle emission from the thermalised system, i.e. no production from the first stage of 
interaction (e.g. intra-nuclear cascade) is included.   



 

 

 

 

Fig. 3. Comparison between measured and calculated production cross sections of 3He and 
4He – full (4He) and dashed (3He) lines: ABLA07 predictions; dots (4He) and squares (3He): 
data from Refs. [43,44]. Please note, that in the calculated cross sections no contribution 
from the first stage of the reaction is taken into account. 

 

2.1.7.  Kinetic-energy spectra 

The kinetic energy of the emitted particle in the frame of the emitting source is sampled from 
the Maxwell-Boltzmann distribution at the corresponding temperature taking into account the 
effects of the Coulomb barrier for charged particles.  

For generating random numbers following others than a rectangular function, different 
techniques are available. The option which is fastest in the application is based on the 
integration and the inversion of the function. In case of Maxwell distributions this procedure 
cannot be performed analytically, and usually one is performing this operation numerically, 
which has of course consequences on the computing time. To avoid this problem, we use in 
ABLA07 an appropriate random generator by a folding method. We demonstrate the 
procedure on the example of the Maxwellian energy distribution: 
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The intensity I is given as the product of the energy E and an exponential decrease with a 
slope given by the temperature T. 

A random generator for the exponential function  
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is readily given by:  
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where PRN is pseudo-random generator that produce numbers in the interval I={0,1} with 
uniform probability. 

The Maxwell distribution can be obtained by the following folding expression of two 
exponential distributions: 
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Consequently, a random generator for the Maxwell distribution can be constructed by adding 
the results of two independent calls of the exponential random generator: 

( ) ( )[ ]PRNPRNTEi lnln +−= .     (26) 

In case of charged particles one has also to consider the influence of the Coulomb barrier. In 
this case, the Eq. (25) is read as: 
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Due to the factor (E+B) in Eq. (27), one cannot obtain an exact formulation of the random 
number generator. In this case, we introduce an approximation: We start from the function: 

TEeEdEdI −⋅∝ 2 ,      (28) 

for which one can obtain an exact formulation. The modification introduced by the additional 
Coulomb term (B+x) in Eq. (27) is small when T<B, and in this case Eqs. (27) and (28) are 
very close to each other. The difference between these two functions becomes more important 
for larger values of T/B, which is not often the case as the Coulomb barriers for light-charged 
particles are in most of the cases ~ 5 –  10 MeV.  

For the function given by Eq. (28), according to the same ideas leading from Eq. (25) to 
Eq. (26) one obtains as the exact formulation the following expression: 

 ( ) ( ) ( )( )PRNPRNPRNTEi lnlnln ++−= .     (29) 

The same form can then be used for creating the spectra according to Eq. (27). Please note, 
that the logarithmic slope of the high-energy tail is correctly reproduced by this event 
generator. 

In order to realistically calculate particle kinetic-energy spectra, functional forms given by 
Eqs. (25) and (27) have to be corrected for the quantum-mechanical effects at low particle 
kinetic energies, which lead to an additional factor proportional to 1/υ, where υ is the particle 
velocity [45]. In this case, Eqs. (25) and (27)  have the following forms: 
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For these two functions, one cannot get exact formulations of the random-number generator, 
but similar as in case of Eq. (27) an approximation, which enables fast calculations of kinetic 
energy spectra: 
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Equation (31) is then used for obtaining the kinetic energies of emitted particles. In Fig. 4, a 
comparison between neutron and proton kinetic-energy spectra calculated according to 
Eqs. (30) and (31) is shown.  

 

Fig. 4. Comparison between analytical functions specified by Eq. (30) (dashed line) and the 
corresponding random generators specified by Eq. (31) (full histogram). The parameters are 
T = 1 MeV and B = 10 MeV.  

After determining the kinetic energy of the emitted particle, its velocity vector is determined 
assuming isotropic emission3 in the frame of the emitting source. Using this information, at 
every de-excitation step the recoil of the excited nucleus due to particle emission is then 
calculated. 

2.2. Gamma emission 

In several evaporation codes, γ-radiation is not included as a possible channel, because the 
particle decay channels dominate above the particle-emission threshold. However, in the last 
de-excitation step of the evaporation cascade, gamma emission becomes competitive to 
particle decay for heavy compound nuclei. Normally, the emission of gammas is much less 
probable than the particle decay (about 105 times less favourable). Since the level density 

___________________________________________________________________________ 
3 This approximation is valid for moderate angular momentum or high excitation energies. 



 

depends on the mass (heavier nuclei have denser energy levels) the number of levels between 
the ground state and the particle separation energy of a heavy nucleus can be as high as 105 or 
even exceed this value. If the excitation energy of the compound nucleus is slightly higher 
than its particle separation energy, it can decay only into the ground state or into the first 
excited states of the daughter nucleus (if the daughter nucleus is an even-even nucleus, then 
only the ground state is energetically accessible due to the pairing gap – see Ref. [46] for a 
wider discussion). In this situation, gamma emission and particle decay can become two 
competitive channels.  

As the emission of statistical γ-rays occurs predominantly via the giant dipole resonance, the 
γ-radiation rate can be calculated according to Ref. [36] as: 
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where E is the excitation energy of the mother nucleus and k(εγ) is the radiative strength  
function for a dipole electric transition. As already said, for high excitation energy the 
probability for γ emission is negligible compared to the probability for particle emission and it 
becomes important only at the energies around and below the particle separation energies. As 
indicated in Ref. [36], taking E = Sn, and using the power approximations for the radiative 
strength function [47] and the constant temperature model [36], equation (32) can be 
parameterised as: 

  560.1910624.0)( TASn ⋅⋅⋅=Γ −
γ MeV,      (33) 

where A is the mass of a mother nucleus and T is the nuclear-temperature parameter of the 
constant-temperature model [36].  

The effects of gamma decay are especially visible in the strength of the even-odd staggering 
of the final products [46]. As an example, the production cross sections of different isotopes 
of 71Lu in the reaction 208Pb (1A GeV) + 1H are shown in Fig. 5. The experimental data from 
[48] are shown as full dots and compared with two sets of calculation: without including γ 
emission (open squares) and with including it (open triangles). One can observe that the γ 
competition tends to reduce the even-odd structure in the isotope cross sections to a great 
extent. 



 

 

 

Fig. 5. Production cross sections of the isotopes of lutetium produced in the reaction 208Pb+H 
at 1 A GeV, calculated with the statistical code ABRABLA with (∆) and without (□) the 
inclusion of the γ-radiation decay channel, and compared to the experimental data (●) from 
Ref. [48]. The errors on the experimental data are shown only if the error bars are larger 
than the symbol size. 

2.3. Fission 

Fission plays an important role in the decay of heavy nuclei. At each de-excitation step a 
competition between fission and other decay channels is calculated. The fission decay width 
is calculated in a time-dependent approach as developed in Refs. [21,25,26]. If fission occurs, 
the ABLA07 code calls a program called PROFI where masses, atomic charges, excitation 
energies and velocities of two fission fragments are calculated. In the PROFI code, only 
binary fission is considered. The original version of the PROFI model has been published in 
Refs. [49,50]; recent developments and improvements are given in Refs. [51,52].   

2.3.1. Time-dependent fission width 

The modelling of the fission decay width at high excitation energies requires the treatment of 
the evolution of the fission degree of freedom as a diffusion process, determined by the 
interaction of the fission collective degree of freedom with the heat bath formed by the 
individual nucleons [53,4]. Such process can be described by the Fokker-Planck equation 
(FPE) [54], where the variable is the time-dependent probability distribution W(x, p; t, β) as a 
function of the deformation in fission direction x and its canonically conjugate momentum p. 
The parameter β is the reduced dissipation coefficient. The solution of the FPE leads to a 
time-dependent fission width Γf(t). However, these numerical calculations are too much time 
consuming to be used in nuclear-reaction codes. 

To avoid this problem, an analytical approximation to the solution of the one-dimensional 
Fokker-Planck equation for the time-dependent fission-decay width for the initial condition of 
a Gaussian distribution centred at the spherical shape has been developed in Refs. [25,26]. 
The mean values and the widths of the initial Gaussian distributions in space and momentum 



 

are given by the entrance channel. In this approximation, the time dependence of the fission 
width is expressed as [25,26]: 
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ωβωβ −+=K  is the Kramers factor [53] with ω0 corresponding to 
the frequency of the harmonic oscillator describing the potential at the saddle-point 
deformation and β is the reduced dissipation coefficient. In the above equation, ΓBW is the 
fission width given by the statistical approach of Bohr and Wheeler [55] and Wn(x=xb;t,β) is 
the normalized probability distribution at the saddle-point deformation xb.. The saddle-point 
deformations are calculated according to Ref. [56]. 

In case of a nuclear potential approximated by a parabola, the solution of the Fokker-Planck 
equation for the probability distribution W(x=xb;t,β) at the saddle-point deformation has a 
Gaussian form with a time-dependent width. For a special case of initial conditions, namely 
zero mean deformation and zero mean velocity, this solution has the following form [57]: 
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with σ2 given as [57]: 
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where k is Boltzmann´s constant, T is the nuclear temperature, µ is the reduced mass 
associated to the deformation degree of freedom, ω1 describes the curvature of the potential at 
the ground state and β1 = (β2-4ω1

2)1/2.  

Due to the classical nature of the Fokker-Planck equation, the initial behaviour predicted by 
this solution is wrong since for t = 0 equation (36) leads to σ = 0. Therefore, in Refs. [25,26] 
the zero-point motion at the spherical shape has been chosen as the initial condition of the 
problem. The zero-point motion is taken into account by shifting the time scale t → t + t0 in 
Eq. (36) by a certain amount t0, where t0 is the time needed for the probability distribution to 
reach the width of the zero-point motion in deformation space. The value of t0 is calculated as 
[21]: 
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In Fig. 6 a comparison between the numerical solution of the one-dimensional Langevin 
equation of motion (full histogram) and the analytical approximation for case of 248Cf starting 



 

 

from spherical initial conditions is shown. The agreement between these two solutions is very 
satisfactory. For more details, see [25,26]. 

 

Fig. 6. Time-dependent fission decay width Γf(t) as obtained from the solution of the one-
dimensional Langevin equation of motion (histograms) assuming that the excited 248Cf system 
starts from either a spherical (ß2=0) or a deformed (ß2=0.235) configuration. Dashed and full 
lines correspond to the result obtained with the described analytical approximations for 
spherical [25,26] and deformed [59] initial conditions, respectively. The figure shows the 
case T=5 MeV and β =5⋅1021s-1.  

By introducing the time-dependent fission decay width, the ABLA07 code can be considered 
as a dynamical code with the explicit treatment of the system time evolution. Technical details 
on the inclusion of the time evolution are given in the Appendix 1 of Ref. [26]. 

2.3.2. Influence of initial conditions 

In the previous section we gave a brief overview on the analytical approximation of the time-
dependent fission width developed in Refs. [25,26] for spherical initial conditions. On the 
other hand, it is very difficult to create a fissioning system under such ideal initial conditions 
[58], and, therefore, the influence of initial deformation on the fission decay width has to be 
taken into account in order to have a realistic description of this decay channel [58, 59,60]. In 
Ref. [59], we extended the above-described approach, which has been derived for the initial 
condition of a Gaussian distribution centred at the spherical shape, to more general initial 
conditions; here, a short overview will be given.  

In order to take into account non-spherical initial conditions, we introduced into the 
approximation (34) - (37) the solution of the dynamic Langevin equation of the system 
without considering the fluctuating term, assuming that the system starts at the finite initial 
deformation xinit. For this case, we calculate the mean deformation of the system at each time 
t. We get two solutions, one for the over-damped and one for the under-damped regime. 

In the over-damped regime, the mean deformation of the system at time t follows the 
equation: 
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In the under-damped regime, the mean deformation of the system is described by the 
equation: 
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The solutions (38) and (39) are then included into the solution of the Fokker-Planck equation 
given in (34) by performing the transformation xb → xb - xmean.  

This then leads to the following analytical approximation to the solution of the Fokker-Planck 
equation for the time-dependent fission width: 
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where t0 is given by Eq. (37) and xmean by Eqs. (38) and (39). This is the formula used in 
ABLA07 to calculate the fission decay width. 

In Fig. 6, we compare the results of this analytical approximation for the time-dependent 
fission width with the numerical results of the Fokker-Planck equation calculated for the 
nucleus 248Cf starting from deformed initial conditions (full line and full histogram). The 
agreement between the analytical approximation for more general initial conditions and one-
dimensional numerical calculations is quite satisfactory.  

2.3.3. Low-energy fission 

In case of low-energy fission, the double-humped structure in the fission barrier as a function 
of elongation and the symmetry classes at different saddle points are of importance for a 
proper description of the process. These effects have been included in the ABLA07 code, 
following the ideas developed in Refs. [1,61,62]: Assuming that the vibrational states in the 
second well are completely damped into all the other compound states, i.e. the system found 
in the second minimum can either fission via passage over the second (B) barrier or return to 
the initial deformation via passage over the first (A) barrier, the fission decay width can be 
calculated as [1,61]:  
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where, ΓA and ΓB represent the partial decay widths for fission over barrier A and B, 
respectively. These partial widths are calculated as: 
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In the above equation, ρg is the level density at the initial deformation, ρA,B level density 
above the barrier A and B, respectively, and BA

fB , the height of the barrier A and B, 
respectively.  

In order to calculate the level density at a specific deformation, one has to take into account 
the symmetry class of the corresponding configuration. Following the ideas of Refs. [1,62,63] 
we assume that the barrier A is mirror symmetric and axially symmetric for nuclei with 
N≤144, while axially asymmetric for nuclei with N>144. The barrier B is axially asymmetric, 
and mirror symmetric for nuclei with mass smaller than 226, while mirror asymmetric for 
larger masses. We also assume, that for nuclei with Z2/A less than 34 only barrier B plays a 
role, while for heavy nuclei with Z2/A larger than 40.6 only barrier A is important. In the 
intermediate region both barriers have to be considered.   

Another important input in the Eq. (42) is the height of the corresponding barrier. In ABLA07 
we assume that these two barriers have the same height and that it is given by the prediction 
of the finite-range liquid drop model of Sierk [64] with ground-state shell-correction energies 
of Ref. [29] included. We make this assumption for the following two reasons: Firstly, 
experimental information on the fission-barrier height is available for a very limited number 
of nuclei (see e.g. [65]), with large uncertainties for the barrier which is the lowest between 
the two A and B. Moreover, different theoretical calculations predict often very different 
values of the barrier heights, and sometimes they over/under-predict the experimental barrier 
by few MeV. This all makes it quite difficult, or even impossible, to perform the calculations 
in regions where the experimental data are scarce or even not existing. Secondly, several 
studies [30,31,66] have shown that the shell-correction energy at the fission saddle point is 
very small, and, thus, considering the uncertainties in model predictions, can be neglected. 
Due to all this, we assume that BA = BB=BFRLDM – δUGS, where δUGS is ground-state shell 
correction energy, and BFRLDM macroscopic fission barrier calculated according to Ref. [64]. 
We have decided to use the model of Ref. [64] as according to a recent study performed in 
[67], this model gives very realistic predictions of fission-barrier heights in experimentally 
unexplored regions. 

In Fig. 7, we compare the prediction of ABLA07 with measured fission probability as a 
function of excitation energy for the compound system 235Np. The agreement between the 
data and calculations is very satisfactory. 

 



 

 

Fig. 7. Energy-dependent fission probability for the compound system 235Np: full symbols – 
experimental data from Ref. [1], full line – results of ABLA07. 

2.3.4. Fragment production in fission 

Properties of fission fragments, i.e. masses, atomic numbers, excitation and kinetic energies, 
are calculated based on the macro-microscopic approach and the separability of compound-
nucleus and fragment properties on the fission path [51]. The original technical description of 
the fragment-formation model – PROFI – was published in Refs. [49,50], while the updated 
description will be the subject of a forthcoming publication.  

In the PROFI model it is assumed that different splits in mass are basically determined by the 
number of available transition states above the potential energy surface behind the outer 
saddle point. The macroscopic properties of the potential-energy landscape of the fissioning 
system are attributed to the strongly deformed fissioning system, which are deduced from 
mass distributions at high excitation energy [68] and Langevin calculations [69]. The 
microscopic properties of the potential-energy landscape of the fissioning system are given by 
the qualitative features of the shell structure in the nascent fragments. They are determined 
from the observed features of the fission channels [70] according to the procedure described 
in [51].  

In case of spontaneous fission, the mass distribution is not determined by the phase space but 
by the variation of the tunnelling probability through the outer barrier as a function of mass 
asymmetry. The tunnelling probability is calculated using the Hill-Wheeler approach. 

The dynamics of the fission process responsible for the fragment formation is considered in 
an approximate way: Since a variation of the mass asymmetry is connected with a substantial 
transport of nucleons and, consequently, the inertia of this collective degree of freedom 
should be large, we assume that the phase space near the outer saddle point determines the 
mass asymmetry of the system, which is more or less frozen during the descent to scission. 
On the other hand, the N/Z collective degree of freedom can be considered as a fast degree of 
freedom, as it is enough to exchange very few neutrons or protons between the two nascent 
fragments in order to explore the full N/Z range observed in the final fragments. Therefore, we 
assume that the N/Z degree of freedom is determined, opposite to mass asymmetry, near the 



 

 

scission point, and we calculate its value taking into account the charge-polarisation effects 
[71].  

The excitation energies of the created fragment are calculated from the available excitation 
energy at the scission point and the deformation energies of the fragments at scission. The 
deformation energies of the fragments are assumed to be specific to the individual fission 
channels. They are deduced from experimental data on total kinetic energies and neutron 
yields. Kinetic energies are then calculated applying the energy conservation law. 

2.3.5.  Particle emission in fission 

In ABLA07, particle emission is calculated at different stages of the fission process – (i) up to 
the saddle point, (ii) from the saddle up to the scission point, and (iii) from the two separated 
fission fragments. In order to calculate the particle emission on the way from the saddle to the 
scission point, we have parameterized the saddle-to-scission times obtained by solving the 
three-dimensional Langevin equation of motion using the one-body dissipation tensor with 
the reduction coefficient Ks=0.25 [72]. Then, at each time step, the probability to emit a 
neutron or some of the light charged particles is calculated. IMF emission is not considered as 
a decay channel between saddle and scission. This procedure is repeated as long as the 
cumulative particle emission time (i.e. sum of the particle emission times emitted after the 
saddle point) is shorter than the saddle-to-scission time.  

After scission, two fission fragments are formed, and their decay is followed as described in 
Section II.1.  

In Fig. 8 a comparison between measured and calculated fission-fragment mass and neutron-
multiplicity distributions in case of spontaneous fission of 252Cf is shown. Please note that 
there was no special adjustment of model parameters in order to reproduce the data.  

 

Fig. 8. Spontaneous fission of 252Cf – Left: comparison between measured mass distribution 
[73] (symbols) and ABLA07 prediction (full line); Right: comparison between measured [74] 
(dots) and evaluated [75] (squares) neutron multiplicities as a function of the fission-
fragment mass and the result of an ABL07 calculation (full line). 

2.4. IMF emission 

The range of emitted fragments in the ABLA07 code has been extended to above Z = 2 in 
order to obtain a more realistic description of the production of intermediate-mass fragments 
(IMFs), which was strongly underestimated in the previous version of ABLA. Two models 
for the production of IMFs are implemented: In the first scenario, all nuclei below the 



 

Businaro-Gallone maximum of the mass-asymmetry dependent barrier, see Fig. 9, are taken 
into account in the evaporation process. The barriers are given by the Bass nuclear potential. 
Thermal expansion of the compound nucleus is considered. In the second scenario, which will 
be described in Section III, if the excitation energy of the system exceeds the corresponding 
threshold, the simultaneous break-up of the system is modelled according to a power-law 
distribution, which is suggested by several theoretical models. 

 

Fig. 9. Energies above the ground state in the touching-sphere configuration (left) and 
corresponding mass distributions (right) given by the available phase space above 
corresponding configuration in the left part of the figure. 

In the case of sequential IMF emission, in order to have a fast calculation scheme, the 
different decay channels are divided into a few groups: The emission of neutrons, light 
charged particles and gammas is treated explicitly. The same is true for fission. The emission 
of IMFs with Z ≥ 3, on the other hand, is treated as one class of events in the first step, in 
order not to increase the computational time. The idea is the following: 

To calculate the probability Pi of a given decay channel i, we need the corresponding decay 
width Γ: 

∑∑∑ Γ+Γ+Γ+Γ+Γ=Γ=Γ
Γ
Γ

= IMFfissiongamma
lcp

neutron
k

ktot
tot

i
iP , ,  (43) 

In the above equation, the sum over lcp goes over all light-charged particles with Z=1, 2, 
while the sum over IMF goes over all intermediate-mass fragments that can be emitted in a 
given reaction. Therefore, the explicit calculation of the last term in Eq. (43) would be very 
time consuming. On the other hand, from the experimental observations we know that the 
element distribution of IMF fragments follows a power law. Thus, we can well estimate the 
total decay width for IMF production ( ∑Γ=Γ IMF

tot
IMF ) by determining the slope in the 

double-logarithmic presentation by calculating the decay width for the isotopes of two 
elements (e.g. Z = 3 and Z = 5) and integrating the adapted power-law function: 
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where A is the mass of a selected IMF. ΓIMF(Z=3) and ΓIMF(Z=5) are then explicitly calculated 
according to the procedure described below.  

Once the parameters a and b are obtained, one can determine the total decay width for IMF 
emission by performing the following integration: 
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Only if the emission of IMFs is realised, the competition between the individual IMFs is to be 
considered, as described below. 

Since long time, it has been discussed whether the emission of an IMF from a heavy nucleus 
(above the Businaro-Gallone point) is better described as an evaporation process or as a 
fission process with very asymmetric mass-split. Both approaches were already used in the 
past in nuclear de-excitation codes, e.g. in GEMINI [76] as very asymmetric fission or in 
GEM2 [77] as evaporation. Already in 1975 it was pointed out that there is a continuous 
transition between the two processes [78]. Recently [79] it was shown that even for such a 
heavy nucleus as 238U the lightest IMFs are produced in a rather compact configuration, 
indicating that there is gradual transition from the standard fission process towards 
evaporation. From the physical point of view an extremely asymmetric binary split into two 
compact nuclei corresponds to an evaporation of a light nucleus from a heavy compound 
nucleus. In ABLA07 we based the fission-to-evaporation changeover on the M-shaped 
potential energy as a function of the mass asymmetry. At the point were the M-shaped 
potential reaches it maximum, the fission model smoothly fades away in favour of the 
evaporation process. 

In ABLA07, the statistical weight for the emission of IMFs is calculated, similarly as in case 
of any other particle-decay channel, on the basis of the detailed-balance principle, except that 
in this case also the available nuclear levels in the IMF have to be considered The decay width 
(Γ) as a function of the excitation energy (E) depends on the inverse cross section (σinv), on 
the level densities of the two daughter nuclei (ρimf  and ρpartner) and on the level density of the 
mother nucleus above the ground state (ρC): 
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with the following relation that guaranties the energy conservation: 

ε+++= QEEE partnerimf .     (47) 

Here E, Eimf and Epartner represent the initial excitation energy of the mother nucleus, and the 
excitation energies of the two daughter nuclei, respectively. Q is the Q-value, and ε is the total 
kinetic energy in the centre of mass of the system. The barrier (B) which is also playing the 



 

role is calculated using the fusion nuclear potential of Bass [38] (see also Section II.1.4). The 
inverse cross section (σinv) is calculated using the ingoing-wave boundary condition model 
[22], where only the real potential is used to describe the transmission probability of particles. 
An analytical approximation to Equation (46) is used in order to avoid the numerical 
calculation of the two integrals, which is rather time-consuming: We assume that in order to 
calculate the phase space available for the IMF emission, we can, instead of folding the level 
densities (Eq. (46)) of the two fragments at the saddle point for IMF emission, calculate the 
level density of the compound nucleus at the same intrinsic excitation energy, using a 
modified level-density parameter to consider the increased surface of the configuration at the 
barrier In other words, instead, as described by Eq. (46), considering the system in a moment 
of the IMF emission as two systems (IMF and its partner) in the touching-sphere 
configuration, we describe it as a single system in the given configuration, i.e. deformation, 
angular momentum and excitation energy given by the touching-sphere configuration. To test 
this assumption, we have calculated the decay width for the 16O emission from several 
different compound systems, using either the Eq. (46) or assumption of a single system in the 
touching-sphere configuration, resulting in Γ2 and Γ1, respectively. In Fig. 10, we show the 
ratio between Γ2 and Γ1 as a function of excitation energy above the touching-sphere 
configuration.   

 

Fig. 10.  Ratio between 16O decay widths, Γ1 and Γ2, calculated assuming one system in the 
touching-sphere configuration or two systems (16O and its partner) in the same configuration, 
respectively. 

The kinetic energies of sequentially emitted IMFs and their partners are calculated, similar as 
in case of fission, from Coulomb repulsion using the momentum conservation in the frame of 
the decaying mother nucleus. 

In Fig. 11 experimental data measured in the reaction 238U+1H at 1 A GeV [79,80,81,82] are 
compared with the predictions of ABLA07 coupled to the reaction model BURST [79]. In this 
reaction, the largest contribution to the production of residual nuclei is coming from fission. 
On the other hand, nuclei with atomic number smaller than ~15 are produced as intermediate-
mass fragments, while those with atomic number larger than ~70 are residues after the 
sequential emission of neutrons, light-charged particles and/or IMFs. Cross sections, as well 



 

 

as first and second moments of the isotopic distributions are compared, and agreement 
between the data and the calculations is very satisfactory.  

 

Fig. 11. Up – Cross sections for the nuclei produced in 1 GeV p on 238U: Measured cross 
sections [79,80,81,82] (left) and prediction of BURST [79] + ABLA07 (right) presented on 
the chart of the nuclides. Down – Right: Mean neutron-to-proton ratio of isotopic 
distributions as a function of the atomic number, compared with the stability line (dashed 
line) and to the BURST + ABLA07 prediction (solid line). Left: FWHM of the isotopic 
distributions compared to the prediction of the BURST + ABLA07 code (solid line). 

3. Break-up stage 

If the excitation energy acquired during the first, collision, stage is high enough, the increase 
of volume has a dramatic consequence: The nucleus enters the spinodal region [83] 
characterized by negative incompressibility. In this region, an increase in the system volume 
due to expansion is connected with the increase in pressure, and, consequently, any local 
fluctuation in density is strongly amplified leading to a mixed phase consisting of droplets 
represented by a small amount of light nuclei at normal nuclear density, and the nuclear gas 
represented by individual nucleons. This process is often called “break-up”. The fragments 
formed in this process undergo deexcitation process and cool down. What is finally 
experimentally observed are the cold fragments, normally called IMFs. The entire 
multifragmentation process is scientifically very interesting for its relation to the equation-of-
state of nuclear matter, in particular to the liquid-gas phase transition. 



 

The starting point of the break-up stage in ABLA07 is a hot nuclear system –so-called 
“spectator”4, leftover of the initial collision stage. We assume that, if the excitation energy per 
nucleon of the spectator exceeds a limiting value [9], the system undergoes the break-up 
stage; otherwise we assume that it will directly de-excite through sequential evaporation 
and/or fission.  

About the limiting excitation energy per nucleon, two options are possible in ABLA07. The 
default option is that the limiting excitation energy per nucleon is constant for all nuclei; its 
value is fixed to 4.2 MeV. Another possible option is to use a mass-dependent value of the 
limiting excitation energy, deduced from the mass dependence of the temperature in the 
plateau of the caloric curve as pointed out by Natowitz  in [84].  

Please note that in the description of the break-up stage we do not consider any effect of 
compression, which could play a role in case of central heavy-ion collisions at Fermi energies.  
In case of nucleus-nucleus collisions at relativistic energies or of spallation reactions, the 
heating of the system is purely thermal without any influence of compression; for these 
reactions, the break-up stage in ABLA07 is adapted. 

3.1. IMF formation by break-up 

It is not trivial to determine theoretically the size distribution of the break-up fragments. 
Models that evaluate it just by phase-space arguments, considering all possible partitions and 
weighted them by the number of available states, are considered to be inadequate since they 
neglect the dynamic of the expansion. On the other hand, the dynamics of the break-up 
process is far to be fully understood. In this context, in order to have an estimate of the 
production cross-sections of the IMFs, we based our model on the following considerations: 

At the starting point of ABLA07, the spectator nucleus has mass spectator
initA  and excitation 

energy init
spectator
init

spectator
init AE ε⋅= . If εinit is larger than some limiting value εfreeze_out [9], the 

system will enter the break-up stage, where the excitation energy of the spectator is partially 
consumed to break up the spectator into several hot fragments. In the light of this picture, the 
break-up process in ABLA07 is technically divided into two steps.  

As the first step, it is calculated how much of the initial energy is removed through the loss of 
mass to form nucleons or fragments (which are, at this stage, not specified). Specifically, it is 
calculated to which amount the mass of the spectator has to be reduced, down to spectator

outfreezeA − , in 
order to get to an excitation energy per nucleon corresponding to εfreeze_out. The energy 
consumed to lose one mass unit varies from 10 MeV for an initial excitation energy of 2.9 A 
MeV to 5 MeV for an initial excitation energy of 11.8 A MeV. These values have been 
deduced from the comparison with the experimental data in the reaction 238U+Pb at 1 A GeV 
[85]. In the model, we assume that in the break-up stage the N/Z ratio is conserved, so the 
break-up product has the same N/Z ratio as the initial spectator nucleus. In this way, we obtain 
the mass spectator

outfreezeA − , nuclear charge spectator
outfreezeZ −  and excitation energy of the spectator residue 

after the break-up stage.  

In order to calculate mass and atomic number of light clusters emitted in the break-up process, 
the following considerations are taken: 
___________________________________________________________________________ 

4 The term spectator is derived from fragmentation reactions, but the following description of the break-up process is 
valid for the decay of any hot thermalised system regardless of the way how it was produced. 



 

 

Many experimental observations established that the production cross-sections in the domain 
of multifragmentation follow a power law:  

τ−∝ A
dA
dσ ,       (48) 

whose slope is rather well described by an exponent τ ≈ 2. The value of τ ≈ 2 turned to be 
rather universal, although a more accurate investigation of experimental data [86] showed a 
certain dependence on Zbound, a quantity often associated to the impact parameter and 
therefore to the total excitation energy. In ABLA07, the mass of nucleons and fragments 
produced at break-up is sampled from an exponential distribution with slope parameter 
τ(E*/A), providing that the sampled mass is rejected when exceeding the maximum available 
mass given as spectator

outfreeze
spectator
init

left
outfreeze AAA −− −= . The value of τ is calculated assuming a linear 

dependence on the excitation energy per nucleon in the temperature regime of interest as 
discussed in Refs. [87,86]. The sampling is performed several times until the entire mass 

left
outfreezeA − is consumed. Each time, the charge ZIMF of the fragment is sampled from a 

Gaussian distribution centred at Zmean, where Zmean is determined by imposing that the ratio 
A/Z is the same of the hot remnant. The width of the distribution is given by the relation [88]:  

symm

outfreeze2
Z C

T −=σ ,      (49) 

where Csym is the symmetry term of the nuclear equation of state. Csym is set to depend on 
E*/A, as reported in Refs. [89,90,87]. 

Each of the break-up-fragments greater than an α particle will then enter the evaporation 
cascade. 

In Fig. 12 we compare the excitation function for the production of 7Be in the reaction 
93Nb+1H calculated with BURST [79] + ABLA07 with experimental data (see [91] and 
references therein). At lowest proton-beam energies, 7Be is produced only via sequential 
decay from the excited nuclei, while at highest energies also the simultaneous break-up 
process contributes to its production. 



 

 

Fig. 12. Excitation function fort the production of 7Be in the reaction of 93Nb+1H – symbols: 
experimental data (see [92] and references therein), full line: predictions of ABLA07 coupled 
to BURST [79]. 

3.2. Kinetic-energy spectra 

The question on how the fragments acquire their kinetic energies in the multifragmentation 
process is still vividly discussed, and is closely related to the time scale of the break-up 
process. If this time scale is very short compared to the time the system needs to reach 
thermal equilibrium (which at intermediate and high energies is < 100 fm/c [93,94,95]), the 
break-up system will not reach the thermal equilibrium and dynamical effects play a decisive 
role, see e.g. [96]. On the contrary, if this time scale is long enough for thermal equilibrium to 
establish, one can apply statistical considerations as done for example in Ref. [97].  

In the first case, the kinematic properties of the created fragments during the break-up are 
mostly given by the Fermi motion of nucleons in the break-up system. In this case, one can 
apply the Fermi-gas model [98] for calculating the width σ of the momentum distribution of a 
created fragment: 
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where Afrag is the fragment mass, and σ0 a parameter amounting to ~118 MeV/c for heavy 
nuclei. For calculating the kinematical properties, one has to consider two additional effects – 
influence of thermal motion of nucleons inside the fragment [99] and thermal expansion of 
the break-up source [24]. Both of these effects will influence the value of the parameter σ0 
entering Eq. (50). 

In the second case, created fragments are in thermal equilibrium with the surrounding gas, and 
the kinematical properties are mostly given by the thermal motion of fragments inside the 
break-up volume. In this case, Eq. (50) can be written as [98]: 
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where mn is the nucleon mass. Additionally, one has to include the effects of Coulomb 
repulsion between the nascent fragments in order to calculate their velocities. This is done 
according to Ref. [100] (see Eq. (4) in Ref. [100]). 

Both of these options, i.e. Eqs. ( 50) and (51) are incorporated in the ABLA07 code, and can 
be used for calculating kinetic energies of fragments produced in multifragmentation.  

4. Conclusions 

Guided by the empirical knowledge obtained in a recent experimental campaign on the 
nuclide distributions measured at GSI, Darmstadt, the ABLA code has been subject to 
important developments. By including the new analytical approximation to the solution of the 
Fokker-Planck equation for the time dependent fission width, ABLA07 is transformed from a 
pure statistical code to a dynamical code. It is coupled to the improved semi-empirical fission 
model PROFI that calculates the characteristics of fragments formed in fission over a large 
range of energies – from spontaneous fission up to high-energy fission. Apart from neutrons, 
light charged particles and gammas, also the emission of intermediate-mass fragments is 
consistently described in ABLA07, thus overcoming the limitation of the previous version of 
the model in which IMF emission was not considered. The code was originally developed for 
describing the de-excitation stage of heavy-ion collisions and spallation reactions at 
relativistic energies. However, coupled to a suitable model for the first stage of the reaction, 
ABLA07 can also be used to model the de-excitation phase of any kind of nuclear reaction if 
the approximations of ABLA07 are not considered to be crucial. The parameters of the 
ABLA07 code are fixed and are the same for all systems and all incident energies, rendering 
to the code a high predictive power.   
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Annex A 

In the table below, a comparison between the major physics input of the previous version of 
the model (ABLA [101,19]) and of the present version (ABLA07) is given. 

 

 ABLA  ABLA07 

Physics Processes Deexcitation process of a 
thermalised system – 
emission of neutrons, protons 
and 4He, and fission 

Deexcitation process of a 
thermalised system – 
simultaneous break-up,  
emission of gammas, 
neutrons, Z=1 and 2 particles 
and intermediate-mass 
fragments, and fission) 

Method Statistical model, Weisskopf 
formalism 

Statistical model, extended 
Weisskopf formalism 

Monte Carlo Technique « timelike » « timelike » 

Nuclear level density Fermi-gas model; 

Deformation dependence 
[18]; Energy dependence 
[18]; Collective enhancement 
[19] 

Fermi-gas model + Constant-
temperature model [35,36]; 
Deformation dependence 
[18]; Energy dependence 
[18]; Collective enhancement 
[19] 

Coulomb barriers For protons and 4He 
empirical barriers 

For LCP and IMF (all 
possible species) by nuclear 
potential [23] plus Coulomb 
potential; Thermal expansion 
of the source [102] included 

Nuclear binding energies Finite-range liquid-drop 
model including shell and 
pairing [29] 

Finite-range liquid-drop 
model including shell and 
pairing [29] 

Particle-decay width Geometrical inverse cross 
sections 

Energy-dependent inverse 
cross sections based on 
nuclear potential using the 
ingoing-wave boundary 
condition model [22]; 
Tunnelling for LCP included 

Fission barriers Finite-range liquid-drop 
model [64] plus ground-state 
shell effect [29] 

Finite-range liquid-drop 
model [64] plus ground-state 
shell effect [29] 

Angular momentum Influence of angular 
momentum on fission barrier 

Influence of angular 
momentum on fission barrier 



 

 

is considered and particle-decay width is 
considered; Change of 
angular momentum due to 
particle evaporation is 
considered 

Dissipation in fission Transient effect considered 
by step function 

Transient effect considered 
by approximated solution of 
the Fokker-Planck equation 

[25,26]; Influence of initial 
conditions included [58,59] 

Low-energy fission 
probability 

Not included Included according to [1,61] 

Fission-fragment nuclide 
distribution 

Conditional transition-state 
model [49,50] 

Conditional transition-state 
model [49,50,51] 

 



 

Annex B 

As mentioned above, the correct description of the inverse cross section would lead to the 
numerical integration of the Eq. (1) and would considerably slow down the calculations. 

In fact, using expression (11) the Eq. (1) can be rewritten in the following way: 
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Following Moretto [103], we can approximate the level density by the constant-temperature 
formula, with T determined by the inverse logarithmic slope of the level density at the 
maximum excitation energy of the daughter nucleus. After changing the variable Ef → ε=εν= 
Ei - Ef  - Sv,  Eq. (A1) becomes5: 
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This results in three integrals to be solved: 
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___________________________________________________________________________ 
5 For comparison, in the previous version of ABLA the particle decay width was given as: 
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B.1 Inclusion of the Coulomb factor  

The first task is to formulate the decay width for charged particles with the Coulomb factor 
included in an approximate closed analytical expression (integral I1 in Eq. (A3)). This means 
that one needs finding the solution of the integral: 
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Here, only the general forms are given in order to illustrate the mathematical idea. The 
variable x=ε-B is the energy above the barrier, T is the temperature and B is the barrier.  

Our basic idea is to calculate the decay width with the combination of two functions: 
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Justification:  
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Since both curves (y1 and y2) are similar in shape, this relation also holds approximately for 
the integrals. 

 

B.2 Inclusion of the energy-dependent quantum-mechanical cross section 

In order to include the energy-dependent quantum-mechanical cross section one has to solve 
the integrals I2 (Eq. (A4)) and I3 (Eq. (A5)). 



 

After replacing Rλ  in Eq. (A4) with the expression given in Eq. (11), I2 becomes: 
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The third integral in Eq. (A5) can be solved analytically in an approximate way like the 
integral I1: 
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In case of neutrons (B = 0), these integrals become: 

22
1 TRI geom
neutrons ⋅= .     (A10) 

2
3

2 πTkRI geom
neut ⋅⋅= .    (A11) 

TkI neut ⋅= 2
3 .      (A12) 

In Figure A.2 we show the ratio between the analytical approximation of Eq. (1), given by 
Eqs. (A6 – A9) for light charged particles and Eqs. (A10 – A12) for neutrons, and the result 
___________________________________________________________________________ 
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of the numerical integration of Eq. (1). This ratio is shown for several different nuclei. We see 
that in case of neutron there is no difference between the analytical and the numerical 
solutions. In case of light charged particles, the analytical approximation over-estimates the 
particle width by less than 10 % as compared to the numerical solution. Thus, we can 
conclude that the analytical approximation to the Eq. (1) is quit realistic in calculating the 
particle-decay width.  

 

 

Fig. A.1. Ratio between numerical and analytical solution of Eq. (A.1) as a function of 
excitation energy for the case of neutron and light-charged particle emission from different 
nuclei. 

REFERENCES 

                                                      
[1] A. Gavron et al, Phys. Rev. C13 (1976) 2374 
[2] F. Rejmund et al, Nucl. Phys. A678 (2000) 215 
[3] K.-H. Schmidt et al, Nucl. Phys. A665 (2000) 221 
[4] P. Grangé, L. Jun-Qing, and H.A. Weidenmüller, Phys. Rev. C 27 (1983) 2063 
[5] J. Pochodzalla et al, Phys. Rev. Lett. 75 (1995) 1040 
[6] L. G. Moretto et al, Ann. Rev. Nucl. Part Sci. 43 (1993) 379 
[7] B. K. Srivastava et al, Phys. Rev. C65 (2002) 054617 
[8] M.-V. Ricciardi et al, Phys. Rev. Lett. 90 (2003) 212302 
[9] K.-H. Schmidt, M. V. Ricciardi, A. Botvina, T. Enqvist, Nucl. Phys. A 710 (2002) 157 
[10] V. A. Karnaukov, Phys. of Part. and Nuclei 37 (2006) 165 
[11] http://www.sns.gov 
[12] http://neutron.neutron-eu.net/n_ess 
[13] C. Rubbia et al, Report CERN/AT/95-44/(ET) (1995) 
[14] C. D. Bowmann et al, Nucl. Instr. Meth. A320 (1992) 336 



 

                                                                                                                                                                      
[15] R. G. Stokstad, "The use of statistical models in heavy-ion reaction studies", published 

in "Treatise on heavy-ion science", Volume 3, edited by D. A. Bromely, Plenum Press, 
New York, ISBN 0-306-41573-9 (v. 3) 

[16] V. F. Weisskopf and D. H. Ewing, Phys. Rev. 57 (1940) 472; ibid 935 
[17] W. Hauser and H. Feschbach, Phys. Rev. 87 (1952) 366 
[18] A.V. Ignatyuk, G.N. Smirenkin and A.S. Tishin, Sov. J. Nucl. Phys. 21 (1975),  255. 
[19] A. R. Junghans et al, Nucl. Phys. A 629 (1998) 635. 
[20] V.F. Weisskopf and D.H. Ewing, Phys. Rev. 57 (1940) 472 
[21] B. Jurado, K.-H. Schmidt and J. Benlliure, Phys. Rev. B 533 (2003) 186 
[22] M. Kildir et al, Phys. Rev. C 51 (1995) 1873. 
[23] R. Bass, Proc. Of the Symposium on Deep-Inelastic and Fusion Reactions with Heavy 

Ions, Berlin 1979, Springer Verlag, Berlin. 
[24] J. Tõke, J. Lu and W. Udo Schröder, Phys. Rev. C 67, 034609 (2003)  
[25] B.Jurado et al, Nucl. Phys. A 747 (2005) 14 
[26] B. Jurado, C. Schmitt, K.-H. Schmidt, J. Benlliure and A. R. Junghans, Nucl. Phys. A 

757 (2005) 329 
[27] L. G. Moretto, Proc. of the 3rd IAEA symposium on the physics and chemistry of 

fission, Rochester, New York, 13-17 August 1973, p. 329. 
[28] S. Bjørnholm, A. Bohr and B.R. Mottelson, Proc. Int. Conf. on the Physics and 

Chemistry of Fission, Rochester 1973 (IAEA Vienna 1974) Vol. 1, p. 367 
[29] P. Moller et al,  At. Data Nucl. Data Tables 59 (1995) 185 
[30] W.D. Myers and W.J. Swiatecki, Nucl. Phys. A 601 (1996) 141 
[31] A.V. Karpov, A. Kelić and K.-H. Schmidt, J. Phys. G 35 (2008) 035104 
[32] K.-H. Schmidt et al, Z. Phys. A 308 (1982) 215. 
[33] A. V. Ignatyuk, K. K. Istekov and G. N. Smirenkin, Yad. Fiz. 29 (1979) 875 (Sov. J. 

Nucl. Phys. 29 (1979) 450) 
[34] A. V. Ignatyuk, M. G. Itkis, V. N. Okolovich, G. R. Ruskina, G. N. Smirenkin, A. S. 

Tishin, Yad. Fiz. 25 (1977) 25 (Sov. J. Nucl. Phys. 25 (1977) 13) 
[35] A. Gilbert, A. Cameron, Can. J. Phys., 43, 1446 (1965) 
[36] A.V. Ignatyuk, in: G.C. Bonsignori, M. Bruno, A. Ventura, D. Vretenar (Eds.), 

Proceedings on of the Conference Bologna 2000: Structure of the Nucleus at the Dawn 
of the Century, Bologna, Italy 29 May–3 June 2000, World Scientific, Singapore, 2001 

[37] S. Cohen, W. J. Swiatecki, Ann. Phys. 22 (1963) 406. 
[38] R. Bass, Proc. Of the Symposium on Deep-Inelastic and Fusion Reactions with Heavy 

Ions, Berlin 1979, Springer Verlag, Berlin. 
[39] M. de Jong, „Experimentalle Untersuchungen und Modellrechnungen zur 

Projektilfragmentation schwerer Kerne am Beispiel von 208Pb“, TU Darmstadt, 1998. 
[40] Y. Avishai, Z. Physik A286 (1978) 285. 
[41] C. Y. Wong, Phys. Rev. Lett. 31 (1973) 766. 
[42] D. L. Hill, J. A. Wheeler, Phys. Rev. 89 (1953) 1102. 
[43] R.Michel et al., Nucl.Inst. Meth.B 103 (1995) 183  
[44] C.M.Herbach et al., Proc. of the SARE-5meeting, OECD, Paris, July 2000 
[45] A. S. Goldhaber, Phys. Rev. C 17 (1978) 2243 
[46] M. V. Ricciardi et al, Nucl. Phys. A 733 (2004) 299-318 
[47] P. Axel, Phys. Rev. 126 (1962) 271 
[48] T. Enqvist et al., Nucl. Phys. A 686 (2001) 481 
[49] J. Benlliure, A. Grewe, M. de Jong, K.-H. Schmidt, S. Zhdanov, Nucl. Phys. A 628 

(1998) 458 
[50] K. Kruglov, A. Andreyev, B. Bruyneel et al., Europ. Phys. J. A 14 (2002) 365 



 

 

                                                                                                                                                                      
[51] K.-H. Schmidt, A. Kelić and M.V. Ricciardi, accepted in Eur. Phys. Lett; arXiv nucl-

ex/0711.3967v1 
[52] A. Kelić and K.-H. Schmidt, to be submitted 
[53] H.A. Kramers, Physika VII 4 (1940) 284 
[54] H. Risiken, Springer-Verlag, Berlin Heidelberg, 1989, ISBN 0-387-50498-2 
[55] N. Bohr and J.A. Wheeler, Phys. Rev. 56 (1939) 426 
[56] R. W. Hasse and W. D. Myers, “Geometrical Relationships of Macroscopic Nuclear  

Physics” Springer-Verlag Berlin Heidelberg (1988) ISBN 3-540-17510-5 
[57] S. Chandrasekhar, Rev. Mod. Phys. 15 (1943) 1 
[58] C. Schmitt, P.N. Nadtochy,  A. Heinz, B. Jurado,  A. Kelić,  K.-H. Schmidt, Phys. Rev. 

Lett. 99 (2007) 042701 
[59] C. Schmitt et al, in preparations. 
[60] R.J.Charity, arXiv:nucl-th/0406040v1 (2004) 
[61] V.M. Strutinsky and S. Bjørnholm, Proc. of International Symposium on Nuclear 

structure, 4-11 July 1968, Dubna; published by IAEA, Vienna 1968. 
[62] S. Bjørnholm and J.E. Lynn, Rev. Mod. Phys. 52 (1980) 725  
[63] K.-H. Schmidt et al, Nucl. Phys. A 665 (2000) 221 
[64] A. Sierk, Phys. Rev. C 33 (1986) 2039 
[65] M. Dahlinger, D. Vermeulen, K.-H. Schmidt, Nucl. Phys. A 376 (1982) 94 
[66] W.J. Swiatecki, K. Siwek-Wilczynska and J. Wilczynski, Acta Phys. Pol. B 38 

(2007)1565 
[67] A. Kelić and K.-H. Schmidt, Phys. Lett. B 643 (2006) 362 
[68] Ya. Rusanov et al., Phys. At. Nucl. 60 (1997)  683 
[69] P. N. Nadtochy, G. D. Adeev and  A. V. Karpov, Phys. Rev. C  65 (2002) 064615 
[70] U. Brosa, S. Grossmann and A. Müller, Phys. Rep. 197 (1990) 167 
[71] P. Armbruster, Nucl. Phys. A 140  (1970) 385 
[72] P.N. Nadtochy, private communication 
[73] F.-J. Hambsch and S. Oberstedt, Nucl. Phys. A 617 (1997) 347 
[74] R. L. Walsh and J. W. Boldeman, Nucl. Phys. A 276 (1977) 189 
[75] A. Wahl, At. Data Nucl. Data Tabels 39 (1989) 1 
[76] R. J. Charity et al., Nucl. Phys. A 483 (1988) 371. 
[77] S. Furihata, Nucl. Instrum. Methods B 171 (2000) 251 
[78] L. G. Moretto, Nucl. Phys. A 247 (1975) 211 
[79] M. V. Ricciardi et al., Phys. Rev. C 73 (2006) 014607 
[80] P. Armbruster et al, Phys. Rev. Lett. 93 (2004) 212701 
[81] M. Bernas et al, Nucl. Phys. A 765 (2006) 197 
[82] M. Bernas et al, Nucl. Phys. A 725 (2003) 213  
[83] Ph. Chomaz, M. Colonna and J. Randrup, Phys. Rep. 389 (2004) 263 
[84] J. B. Natowitz et al, Phys. Rev. C 65 (2002) 034618 
[85] T. Enqvist et al, Nucl. Phys. A 658 (1999) 47 
[86] C. Sfienti et al., Nuclear Physics A 787 (2007) 627 
[87] N. Buyukcizmeci, R. Ogul and A.S. Botvina, Eur. Phys. J. A25 (2005) 57 
[88] A. Raduta and F. Gulminelli, Phys. Rev. C 75 (2007) 024605 
[89] G.A. Souliotis et al, PRC 75 (2007) 011601R 
[90] A.S. Botvina et al., Phys. Rev. C 74  (2006) 044609 
[91] R. Michel et al, Nucl. INstr. Meth. B 129 (1997) 153 
[92] R. Michel et al, Nucl. INstr. Meth. B 129 (1997) 153 
[93] A. Boudard, J. Cugnon, S. Leray and C. Volant, Phys. Rev. C 66 (2002) 044615 
[94] Th. Ghaitanos, H. Lenske and U. Mosel, Phys. Lett. B 663 (2008) 197 
[95] W. Cassing, Z. Phys. A 327 (1987) 447 



 

                                                                                                                                                                      
[96] W. Nörenberg, G. Papp and P. Rozmej, Eur. Phys. J. A 9 (2000) 327 
[97] J.P. Bondorf et al, Phys. Rep. 257 (1995) 133 
[98] A.S. Goldhaber, Phys. Lett. B53 (1974) 306 
[99] W. Bauer, Phys. Rev. C51 (1995) 803 
[100] K.C. Chung, R. Donangelo and H. Schechter, Phys. Rev. C36 (1987) 986 
[101] J.-J. Gaimard, K.-H. Schmidt, Nucl. Phys. A 531 (1991) 709 
[102] J. Tõke, J. Lu, and W. Udo Schröder, Phys. Rev. C 67, 034609 (2003)  
[103] L. G. Moretto, Proc. of the 3rd IAEA symposium on the physics and chemistry of 

fission, Rochester, New York, 13-17 August 1973, p. 329 
[104] http://integrals.wolfram.com/index.en.cgi 
 
 


