

Plan for S327 test run 1 (Apr. 17/18, 2009)

Status: Klaus Sümmeler, April 04, 2008

1.) FRS Ion Optics

New optics: FRS Target Station 2 ➔ Cave C

Load theoretical data set from optics calculations:

From SIS to TA: **sista2007_ta2** (11.6308 Tm)

From TA to Cave C: **FRSTOR3B-TA2-2008** (11.6308 Tm)

Matrices for MOCADI: /u/boutin/gico/mocadi/matrix/R3BFOC***.MAT

Matrix printout and envelope plot also on </d/frs01/sue/S327/mocadi/matrix/>

2a.) Tuning of ^{12}C pilot beam through FRS

Switch FRS magnet power supplies from "FRS" to "Caves" before closing caves. Switch on ALADIN power supply, set to remote control.

At FRS:

Tune ^{12}C beam (**735.0 MeV/u**) with about 1kHz via FRS to Cave C.

At console/SD-program ("Sonderoptionen"): Load theory dataset "..._sista2007_ta2" and scale with MGSKAL (at FRS, Cave C or ESR console only!) **from SIS to TA** by 0.7926 = 9.219/11.6308. Center at TA with MIRKO ("Geradelegen").

Insert SC21 (3.3 mm thick, set TS3ESA_S=250 mm) and SC81 (3 mm thick, set TH4DIS_S=234 mm)

Load theory data set ...\$_FRSTOR3B-TA2-2008.SET at SD console and scale TA-CC with the following scaling factors:

TA-S2 by 9.218/11.6308=0.7926

S2-S8 by 9.191/11.6308=0.7902

S8-CC by 9.167/11.6308=0.7882

<u>^{12}C pilot beam, no target, no degrader, SC21 3mm, SC813mm</u>			
Section	Energy (MeV/u)	B ₀ (T m)	beta
SIS-TA	735.0	9.219	
TA-S2	734.9	9.218	
S2-S8	730.6	9.191	0.8282
S8-CC	728.6	9.167	0.8277

Check centering of the beam in the FRS up to S8 with MWPCs. Record Hall-probe B-values, calculate effective radii of dipoles D1-D7. Record magnet settings with SRMAG at FRS console.

Old values of dipole radii and bending angles (from S277/S295, p.41):

Dipole	radius (m)	angle (rad)
D1	11.2511	0.5231
D2	11.2774	0.5221
D3	11.2779	0.5198
D5	12.0844	0.1223
D7	11.4612	0.5228

SC81 position calibration: Insert MW81/82 and record/plot GO4-spectrum of MW-pos at SC81 vs. Δt (SC81L-SC81R).

Predicted transmission of ^{12}C : S2-S8=97.5%; S8-CC=94.8%; S2-CC=71.4%.

Check for achromaticity at S8 by scaling TA-S8 by $\pm 0.5\%$ and observe S8 focal position in GO4.

At LAND:

Adjust ROLU-voltages and -CFD-thresholds. Check centering of the beam at Cave C with ROLU. Switch on ALADIN field to center ^{12}C on NTF ($I \approx 1600$ units). (Empty target at Cave C).

Check all detectors, adjust delays, check q-windows and t-start/stops, CFD thresholds, multiplicities.

- SC21, SC81, POS, PSP1/2 q- and t-spectra; PSP1/2 position spectra.
- GFI1/2 and NTF q- and t-spectra.
- Check μ SSD spectra.

No pixel runs for PSP since ^{12}C yields bad position resolution.

2b) Calibration of degrader thickness

Add wedge degrader at S2, thickness 737.1 mg/cm² Al. Rescale all FRS section separately. Degrader settings: disks only, wedge angle = -4.44mg/cm³ or 1.645 mrad.

Wedge	TS3ED7VU(O)	+100 mm
Disk:	TS3ED7DP	in
Disk angle	TS3ED7DS	84.7 degrees
Ladder	TS3ED7LS	out (-108.4 mm)

^{12}C pilot beam, no target, S2-disks, SC21 (3.3 mm), SC81 (3 mm)			
Section	Energy (MeV/u)	Bp (T m)	beta
SIS-TA	735.0	9.219	
TA-S2	734.9	9.218	
S2-S8	726.5	9.150	0.8273
S8-CC	724.4	9.134	0.8268

Predicted transmissions: TA-S2=97.3%; S2-S8=95.2%, S8-CC=70.7%, S2-CC=67.3%.

2c) Calibration of production target

Insert Be-8047 production target (pos.38). Rescale all FRS section separately.

^{12}C pilot beam, Be-8047 target, S2 disks, SC21 (3.3 mm), SC81 (3 mm)			
Section	Energy (MeV/u)	Bp (T m)	beta
SIS-TA	735.0		
TA-S2	687.9	8.837	
S2-S8	679.3	8.767	0.8158
S8-CC	677.2	8.749	0.8152

Predicted transmissions: TA-S2=63.1%; S2-S8=96.7%, S8-CC=68.2%, S2-CC=65.9%.

3) **⁸B secondary beam setting**

SIS energy of ¹²C beam = 735.0 MeV/u, Be-8047 production target (pos.38), degrader wedge in. Rescale all FRS section separately.

Degrader settings: disks only, wedge angle = -4.61mg/cm³ or 1.71 mrad.

Wedge	TS3ED7VU(O)	+100 mm
Disk:	TS3ED7DP	in
Disk angle	TS3ED7DS	84.5 degrees
Ladder	TS3ED7LS	out (-108.4 mm)

Fragment ⁸B, Be-8047 target, S2 disks, SC21 (3.3 mm), SC81 (3 mm)			
Section	Energy (MeV/u)	B ρ (T m)	beta
SIS-TA	735.0		
TA-S2	682.3	7.054	
S2-S8	670.4	6.977	0.8135
S8-CC	668.3	6.963	0.8130

Predicted transmissions for ⁸B: at S2 $1.7 \cdot 10^{-4}$ /beam particle; S8= $9.5 \cdot 10^{-5}$, CC= $4.2 \cdot 10^{-5}$

Check isotope id at Cave C. Make sure that ⁸B is centered at S8 and on LAND target. Check rate (prediction is $\approx 40,000$ ⁸B per spill for 10^9 ¹²C ions at TA). Only small contaminants should be ⁷Be (300 per spill) and ¹⁰C (500 per spill).

Remove LAND target. Check Z-spectrum in NTF.

Sweep ⁸B over GFI and NTF.

Insert Pb-200 target. Center Z=4 (Be) on NTF.

Production run:

Set trigger cocktail and record trigger downscale factors in file sheets.

Search for proton hits in DCH1/2 and TFW in coincidence with Z=5 (B) in front of LAND target and with Z=4 (Be) in NTF. Position spectra should be symmetric on p detectors.

The total cross section for Coulomb breakup of ⁸B is about 300 mb. With a 200 mg/cm² ²⁰⁸Pb target, this yields about 1.8E-04 breakup events per ⁸B projectile or 7 breakup events per spill.