

Plan for the FRS settings in S271 main Run in August 10-15 2006
4 July 2006

Primary beam $^{24}\text{Mg}^{12+}$ with energy 600. A MeV, $> 10^{10}$ spill $^{-1}$, a spill time of 4 s. Energy loss of ^{24}Mg in Seetram (13.5 mg/cm 2 Ti) is 0.2 MeV/u.

Optics settings: SISTSHFS\$\$_S271-3.SET, the achromatic TA-S2 setting with the S1-wedge angle of 194.3 mrad fitting to ^{20}Mg isotope, the S2-S4 optics to be in standard mode set for ^{17}Ne following the velocity of ^{19}Mg after the reaction target.

To use the MOCADI files *MOC_Mg24_Mg20_Mg19_achr2_600.in* and *MOC_Mg19_Ne17_achr2_600.in* for Bp calculations of TA-S2 and S2-S4, respectively. (For preliminary Bp calculations, one may use the LISE $^{++}$ file *Mg24-Mg20-wedge-ST-achro-591.lpp*)

1.) Primary beam ^{24}Mg through FRS, file *MOC_Mg24_notarget_nowedge_achr2_600.in*
E-SIS = 600.0 MeV/u, intensity ~ 1000 spill $^{-1}$,

No target, only Seetram, SIS-window is very thin, no S1 degrader.

Equipment at S2: all windows + detectors with MW22 +SC21(1mm)+SC31(2mm) in.

Bp (TA-S2) = 8.1018 Tm, E = 599.6 MeV/u

Bp (S2-S3) = 8.0123 Tm, E = 589.0 MeV/u

Bp (S3-S4) = 7.9856 Tm, E = 585.8 MeV/u

No comparison with S2 without matter, but we can use an effective thickness of the matter at S2 from the test measurements.

2.) Test detectors (MWPC22, MWPC41/42, + CSI11/21/31/41 + DSSDs + MUSIC), sweep beam.

3.) Calibrate target thickness, file *MOC_Mg24_nowedge_achr2_600.in*

Insert 4007 mg/cm 2 ^9Be target, and scale TA-S2,

new Bp (TA-S2) = 7.6704 Tm E=548.8 MeV/u.

Compare with ATIMA -> effective thickness.

4.) Calibrate wedge thickness, S0 target out, file *MOC_Mg24_notarget_achr2_600.in*.

No target, Insert S1 wedge (must be 4632 mg/cm 2 Al+ 2x50micron Ti), and scale S1-S2,

Bp(TA-S1) = 8.1018 Tm like in 1.)

Bp (S1-S2) = 7.6020 Tm, E = 540.8 MeV/u

Compare with ATIMA -> effective thickness.

5.) Calibrate S2 target thickness, ~ 2016 g/cm 2 of ^9Be (**two Be bricks must be on target holder!**), the S0-target + S1 wedge out, file *MOC_Mg24_reactiontarget_achr2_600.in*

new Bp (S2-S3) = 7.8221 Tm, E=566.6 MeV/u, TA-S2 like in 1.), **Sc21 + MW22 out**

Bp (S3-S4) = 7.7948 Tm, E=563.4 MeV/u,

new Bp (S2-S3) = 7.7958 Tm, E=563.5 MeV/u, TA-S2 like in 1.), **Sc21 + MW22 in**

Bp (S3-S4) = 7.7683 Tm, E=560.3 MeV/u,

Compare with ATIMA -> effective thickness.

6) Test chromaticity with primary beam ^{24}Mg , file *MOC_Mg24_achr2_test463.in*.
 System becomes achromatic for ^{24}Mg at $E = 463.0 \text{ MeV/u}$ for TA-S2 with S1-wedge,
 $B\beta(\text{TA-S1}) = 6.9151 \text{ Tm}$, $E=462.6 \text{ MeV/u}$, $B\beta(\text{S1-S2}) = 6.3119 \text{ Tm}$, $E=396.6 \text{ MeV/u}$
 Change E-SIS by $\pm 5 \text{ MeV/u}$ up and down and check positions, the beam spot should
 move at S1 by $\pm 1.2 \text{ cm}$ but at S2 the peak should not move!

7.) Calibrate TOF / MUSIC with different energies (optional, as we have 3 energies at S2: 1) notarget, nowedge; 2) nowedge; 3) target +wedge.

May need recalculation of $B\beta$ with new effective thicknesses.

Change SIS energy by $\pm 100 \text{ MeV/u}$, no target, no wedge, SCI21 +SCI31+MW22 in
 $E_{\text{SIS}} = 700 \text{ MeV/u}$, $B\beta(\text{TA-S2}) = 8.9286 \text{ Tm}$, $B\beta(\text{S2-S3}) = 8.8314 \text{ Tm}$, $v = 24.538 \text{ cm/ns}$,
 $B\beta(\text{S3-S4}) = 8.8051 \text{ Tm}$, $v = 24.514 \text{ cm/ns}$

$E_{\text{SIS}} = 600 \text{ MeV/u}$, $B\beta(\text{TA-S2}) = 8.1049 \text{ Tm}$, $B\beta(\text{S2-S3}) = 8.0123 \text{ Tm}$, $v = 23.710 \text{ cm/ns}$,
 $B\beta(\text{S3-S4}) = 7.9856 \text{ Tm}$, $v = 23.680 \text{ cm/ns}$

$E_{\text{SIS}} = 500 \text{ MeV/u}$, $B\beta(\text{TA-S2}) = 7.2450 \text{ Tm}$, $B\beta(\text{S2-S3}) = 7.1259 \text{ Tm}$, $v = 22.615 \text{ cm/ns}$,
 $B\beta(\text{S3-S4}) = 7.0933 \text{ Tm}$, $v = 22.570 \text{ cm/ns}$

8.) Change energy back to 600 MeV/u, put in target and Scale to a secondary ^{20}Mg beam, a recalculation of $B\beta$ with new effective thicknesses might be needed.

Primary target in (4007-Be), no S1 degrader, no SecTaget,

file *MOC_Mg24_Mg20_nowedge_noST_achr2_600.in*.

$B\beta(\text{TA-S2}) = 6.3368 \text{ Tm}$, $E=539.8 \text{ MeV/u}$

$B\beta(\text{S2-S3}) = 6.2523 \text{ Tm}$, $E= 528.0 \text{ MeV/u}$

$B\beta(\text{S3-S4}) = 6.2137 \text{ Tm}$, $E= 522.7 \text{ MeV/u}$

Expected intensity of ^{20}Mg is 570/spill at S2 and 150/spill at S4 for primary beam
 intensity $10^9/\text{spill}$.

To measure a fragment spectrum (ΔE -ToF) at S2-S4 without S1 degrader and with
 minimum S2 matter (SC21+MW22+chamber+DSSD). Isotope ID by ^8Be , ^9B holes.
 Close S2 slits ($\pm 35 \text{ mm}$) to select mainly ^{20}Mg and to match the size of DSSDs.

9.) ^{20}Mg with S1 wedge, the same as 8) but with S1 wedge degrader in addition;

file *MOC_Mg24_Mg20_noST_achr2_600.in*.

$B\beta(\text{TA-S1}) = 6.3368 \text{ Tm}$, $E=539.8 \text{ MeV/u}$

$B\beta(\text{S1-S2}) = 5.8000 \text{ Tm}$, $E=466.4 \text{ MeV/u}$

$B\beta(\text{S2-S3}) = 5.6928 \text{ Tm}$, $E=452.1 \text{ MeV/u}$

$B\beta(\text{S3-S4}) = 5.6610 \text{ Tm}$, $E=447.9 \text{ MeV/u}$

Much less ^{20}Mg than before, 300/spill at S2 and 150/spill at S4 for primary beam
 intensity $10^9/\text{spill}$. Clean of other isotopes, the distribution of ^{20}Mg is in $\pm 4\text{cm}$ at
 DSSD.

10.) Transmission ^{20}Mg with secondary target ST, file *MOC_Mg24_Mg20_achr2_600.in*

To insert ST (2.016 g/cm^2) at S2 in the vacuum chamber and measure the S2-S4
 transmission.

$B\beta(\text{TA-S1}) = 6.3358 \text{ Tm}$, $E=539.6 \text{ MeV/u}$

$B\beta$ (S1-S2) = 5.8000 Tm, E=466.4 MeV/u

$B\beta$ (S2-S3) = 5.4310 Tm, E=417.7 MeV/u

$B\beta$ (S3-S4) = 5.3910 Tm, E=412.5 MeV/u

now 350/spill and 150/spill of ^{20}Mg with 10^9 /spill of ^{24}Mg are expected at S2 and S4, respectively.

11.) Knockout $^{20}\text{Mg} \rightarrow ^{19}\text{Mg}$, and 2p-decay $^{19}\text{Mg} \rightarrow ^{17}\text{Ne} + \text{p} + \text{p}$

(a) file *MOC_Mg20_Mg19_achr2_600.in* , (b) file *MOC_Mg19_Ne17_achr2.in*

$B\beta$ (TA-S1) = 6.3368 Tm, E=539.8 MeV/u

$B\beta$ (S1-S2) = 5.8000 Tm, E=466.4 MeV/u

Set the sections S2-S4 for ^{17}Ne fragments from ^{19}Mg .

$B\beta$ (S2-S3) = 5.5372 Tm, E=417.3 MeV/u.

$B\beta$ (S3-S4) = 5.5061 Tm, E=413.4 MeV/u.

One separate calculation, (a), with ^{20}Mg at 458.4 MeV/u $\rightarrow ^{19}\text{Mg}$ on a secondary target gives E(^{19}Mg after ST) = 422.1 MeV/u, and then the calculation of energy loss of the same-velocity ^{17}Ne in the rest of S2 setup, (b): E(^{17}Ne before D3) = 417.3 MeV/u.

The expected ^{19}Mg production is 15 hour⁻¹ (if ^{20}Mg intensity 500/spill and spill time 4s). The registration efficiency of micro-DSSD at S2 is of 35%, the transmissions S2-S3, S3-S4 are 78% and 44%, respectively.

Some reactions to measure in addition or in a case of pessimistic scenario.

i) *Fragmentation Mg20->Ne18+2p, (might be interesting to astrophysics)*

file *MOC_Mg24_Mg20_Ne18_achr2_600.in*

$B\beta$ (TA-S1) = 6.3368 Tm, E(^{20}Mg)=539.8 MeV/u

$B\beta$ (S1-S2) = 5.8000 Tm, E(^{20}Mg)=466.4 MeV/u

Set the sections S2-S4 for ^{18}Ne fragments from ^{20}Mg direct fragmentation.

$B\beta$ (S2-S3) = 5.8896 Tm, E(^{18}Ne)=421.1 MeV/u.

$B\beta$ (S3-S4) = 5.8490 Tm, E=416.2 MeV/u.

The reaction rate is of 800 hour⁻¹ (if ^{20}Mg intensity 500/spill and spill time 4s). The registration efficiency of microDSSD at S2 is of 35%, the transmissions S2-S3, S3-S4 are 67% and 37%, respectively.

ii) *Fragmentation Ne17->O15+2p, (definitely interesting to astrophysics)*

files *MOC_Mg24_Ne17_achr2_600.in*, *MOC_Mg24_Ne17_O15_achr2_600.in*

First, we set the sections TA-S2 for ^{17}Ne ,

$B\beta$ (TA-S1) = 6.4726 Tm, E(^{17}Ne)=540.9 MeV/u

$B\beta$ (S1-S2) = 6.0259 Tm, E(^{17}Ne)=480.8 MeV/u

Rate of ^{17}Ne is up to 3000 spill⁻¹ with ^{24}Mg of 10^9 spill⁻¹

Then we set the sections S2-S4 for ^{17}Ne ,

$B\beta$ (S2-S3) = 5.7317 Tm, E(^{17}Ne)=442.3 MeV/u.

$B\beta$ (S3-S4) = 5.7071 Tm, E=439.1 MeV/u.

Second, we set the sections S2-S4 for ^{15}O from a ^{17}Ne direct fragmentation.

$B\beta$ (S2-S3) = 6.3407 Tm, $E(^{15}\text{O})$ =445.2 MeV/u.

$B\beta$ (S3-S4) = 6.3104 Tm, $E=441.6$ MeV/u.

The reaction rate is ~ 1400 hour $^{-1}$ (if ^{17}Ne intensity of 500/spill and spill time 4s). The registration efficiency of microDSSD at S2 is 40%, the transmissions S2-S3, S3-S4 are 48% and 35%, respectively.

iii) Knockout $\text{Ne}^{17} \rightarrow \text{Ne}^{16}$ and decay $\text{Ne}^{16} \rightarrow \text{O}^{14} + 2p$, (the reference case)
 files *MOC_Mg24_Ne17_achr2_600.in*, *MOC_Mg24_Ne17_Ne16_achr2_600.in*,
MOC_Ne16_O14_achr2.in

The same settings for the sections TA-S2 for ^{17}Ne as in ii)

$B\beta$ (TA-S1) = 6.4726 Tm, $E(^{17}\text{Ne})$ =540.9 MeV/u

$B\beta$ (S1-S2) = 6.0259 Tm, $E(^{17}\text{Ne})$ =480.8 MeV/u

The section S2-S4 settings for ^{17}Ne :

$B\beta$ (S2-S3) = 5.7317 Tm, $E(^{17}\text{Ne})$ =442.3 MeV/u.

$B\beta$ (S3-S4) = 5.7071 Tm, $E=439.1$ MeV/u.

We set the sections S2-S4 for ^{15}O from a ^{16}Ne two-proton decay.

$B\beta$ (S2-S3) = 6.0041 Tm, $E(^{14}\text{O})$ =455.7 MeV/u.

$B\beta$ (S3-S4) = 5.9827 Tm, $E=453.0$ MeV/u.

The reaction rate is 40 hour $^{-1}$ (if ^{17}Ne intensity of 500/spill and spill time 4s). The registration efficiency of microDSSD at S2 is 38%, the transmissions S2-S3, S3-S4 are 75% and 47%, respectively.

Program

10-11.08	12.08	13.08	14.08	15.08, first shift	15.08, 2-3 shifts	16.08
Settings	^{19}Mg	^{19}Mg	^{19}Mg	$^{20}\text{Mg} \rightarrow ^{18}\text{Ne}$ 3 hours; $^{17}\text{Ne} \rightarrow ^{15}\text{O}$ 5 hours	$^{17}\text{Ne} \rightarrow ^{14}\text{O}$	Calibrations