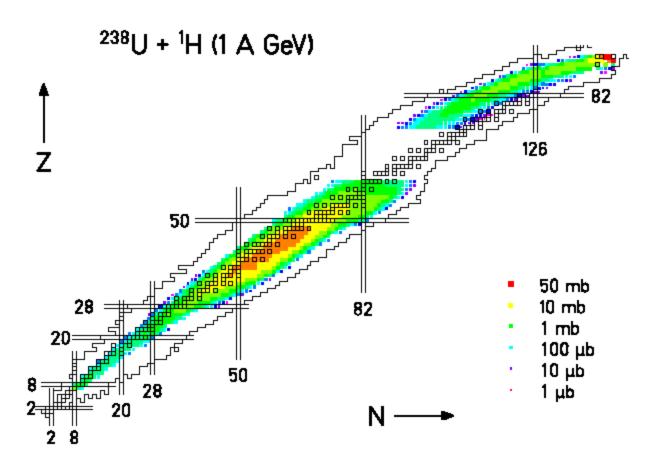
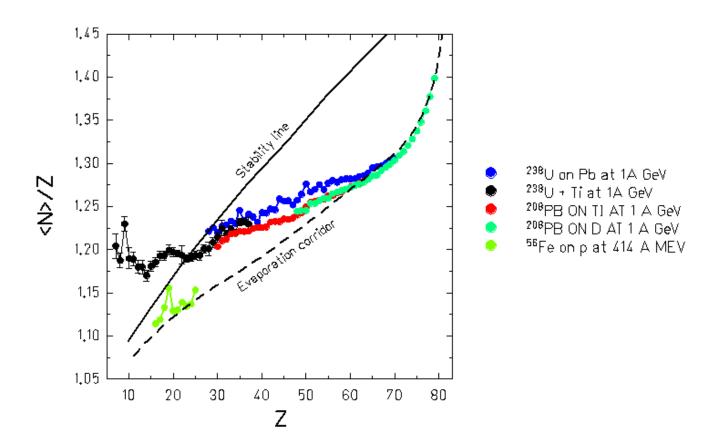
Isotopic distributions of heavy fragmentation products-The isospin thermometer


<u>D. Henzlova</u>, M. V. Ricciardi^a, J. Benlliure^b, A. S. Botvina^a, T. Enquist^a, A. Kelic^a, P. Napolitani^a, J. Pereira^b, K.-H. Schmidt^a

^aGSI-Darmstadt, Germany ^bUniv. Santiago de Compostela, Spain

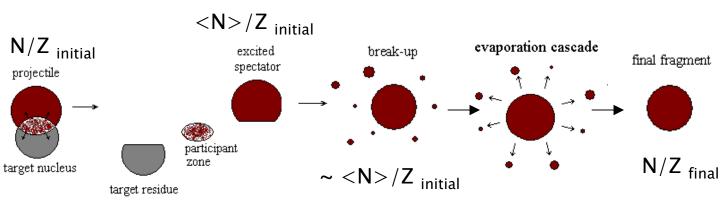
Information contained in <N>/Z ratio of heavy fragments

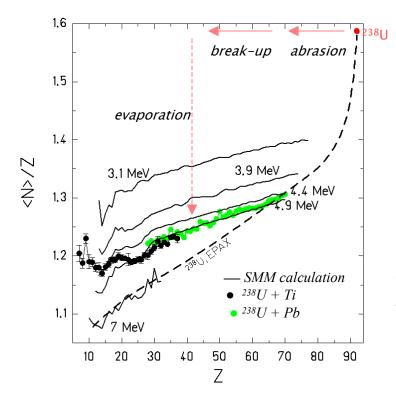
-- introduction --


• FRS allows to identify Z and A of all the measured fragments up to the projectile

- investigation of the isospin (N/Z) effect in the nuclear reaction mechanism
 - fundamental question in the study of the properties of nuclear matter
- important: extension to heavy fragments

Information contained in <N>/Z ratio of heavy fragments


-- indications by previous experiments --


- data do not follow the evaporation corridor
- ullet fragments keep the memory of the N/Z of the initial system
- evaporation does not wash out this memory

Information contained in <N>/Z ratio of heavy fragments

-- the isospin thermometer --

- N/Z $_{initial}$ <N>/Z $_{final}$ = measure of the length of the evaporation cascade
 - possible to trace back the E* ~ T at the beginning of the evaporation stage
 - T_{freeze-out} of the break-up stage may be deduced

T_{freeze-out} ~ 5MeV and constant over a wide E* range

evaporation ends up earlier + does not wash out the information on initial N/Z

Proposed experiment

- deeper investigation of the presented indications
- U and Pb different elements, different fission competitions, small difference in N/Z
- use of two more N/Z different beams + Pb target

 (1A GeV) 136Xe
 - 136Xe, 124Xe isotopes of the same element
 - no fission competition

What do we expect?

- more pronounced difference in the measured <N>/Z
- clearer signature of the memory on the initial N/Z
- T_{freeze-out} dependence on the N/Z ratio?

present status:

• 136Xe(1AGeV)+Pb experiment performed in November 2002

presently waits for the beam time