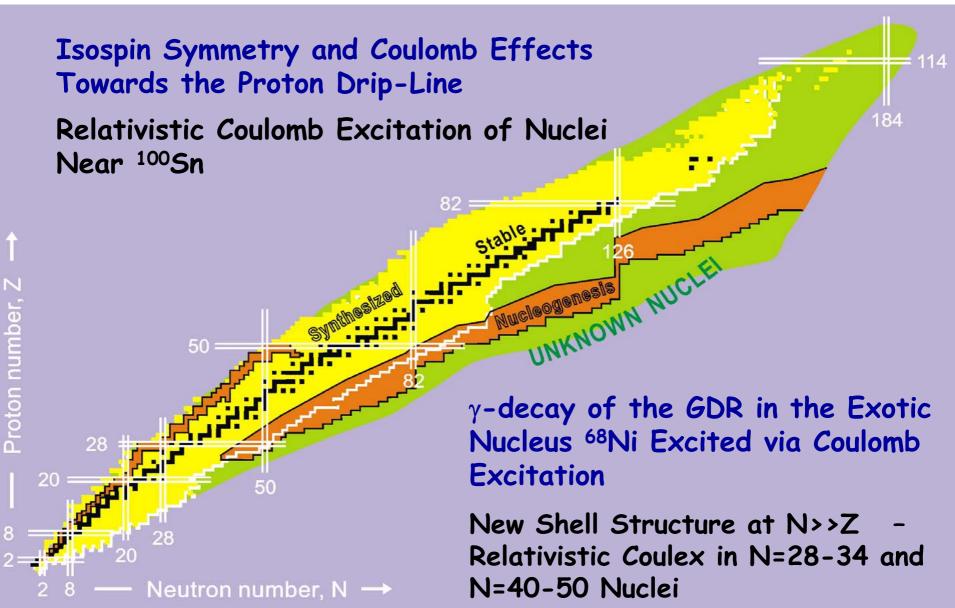


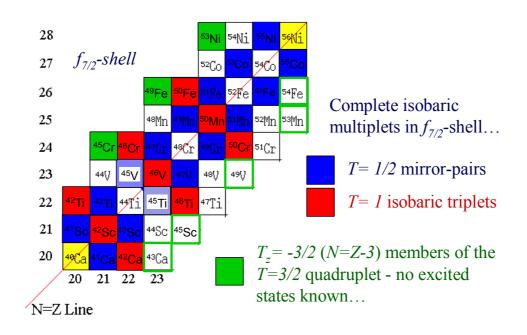
RISING experiments Fast beam campaign in 2003

P. Reiter for the RISING collaboration Universität zu Köln

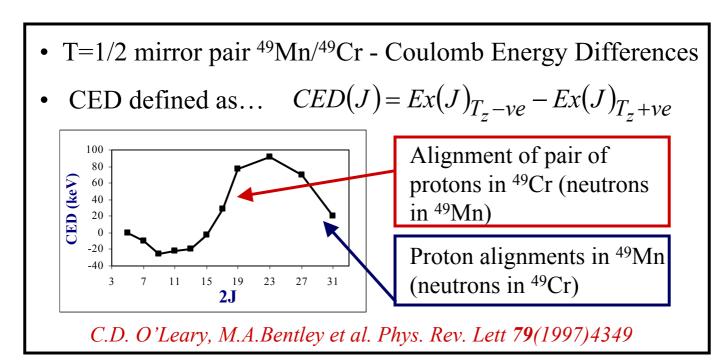


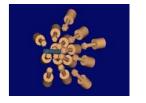
+ Canberra (Australia)

Outline: First Experiments



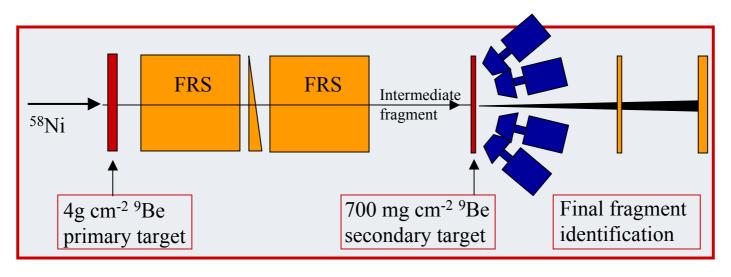
N~Z Collaboration (Keele, Daresbury, Lund, Surrey, York, GSI) Spokesperson: M.A.Bentley (Keele University, U.K.)


- First identification of excited states in the T_z = -3/2 nuclei ^{45}Cr and ^{53}Ni identify T=3/2 mirror pairs in $f_{7/2}$ -shell
- Isospin symmetry and Coulomb effects towards the proton drip-line rigorous test of full fp-shell model

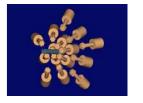

Studies of Coulomb energy differences (CED) as a function of spin are a remarkably sensitive probe of changes in nuclear structure...

- Spatial correlations of pairs of protons (pair alignments etc...)
- Changes in bulk deformation, and different orbital radii,
- Band-termination effects, etc.

• T=1 triplet, A=50 mirror pair ⁵⁰Fe/⁵⁰Cr (current limit)

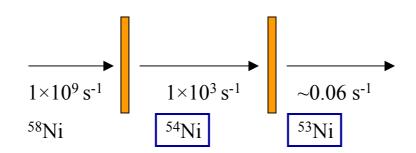

T=3/2 mirror-pairs?

- \cdot Large proton-excess, large difference in Z between mirrors
- · Larger "one-body" contributions to CED (e.g. orbital radii)?
- Towards the drip line how well does isospin symmetry hold?
- Coulomb distortions of proton wave-functions?
- Stringent test of shell-model



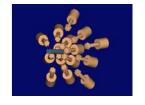
Nuclei of interest produced at RISING target via two-step fragmentation of 58Ni.

- Largest production rate achieved when intermediate fragment is one or two nucleons away from nucleus of interest (i.e. for ^{45}Cr , the intermediate fragment will be ^{46}Cr or ^{47}Cr).
- Prompt gammas recorded using RISING, and fragments identified downstream (CATE) to produce fragment-gated gamma-ray spectra.
- Spectra recorded for 45 Cr and 53 Ni, and also their mirror partners 45 Sc and 53 Mn. Level schemes constructed by comparison of "mirror spectra" and known levels of $T_{_7}$ =+3/2 nuclei.



Rate calculations...

- FRS set up to choose one specific intermediate fragment (ϵ_{FRS} = 0.25, targets 4 g cm⁻² (FRS) and 700 mg cm⁻² (RISING))
- 1×10⁹ pps ⁵⁸Ni, primary and secondary cross-sections from EPAX



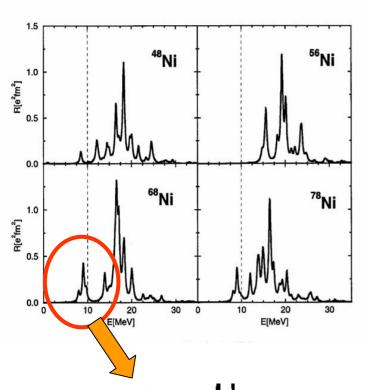
- Assume a gamma-ray transition in 53 Ni from a state populated with a 50% probability. Require few 100 counts in peak for identification. With ϵ_{RISING} = 0.03, yields 300 photo-peak counts in 12 shifts.
- 4 shifts required for same intensity for 45Cr transitions.
- Require one shift each for the higher-yield mirror partners (45Sc and 53Ni) to obtain "mirror-spectra" for comparison.
- Estimate three additional shifts for optimisation of FRS, 2 shifts for changes of FRS settings

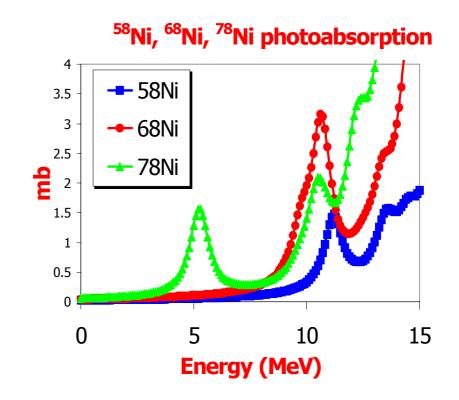
γ-decay of the GDR in the Exotic Nucleus ⁶⁸Ni Excited via Coulomb Excitation


Collaboration: Angela Bracco et al. University of Milano, A. Maj et al. University of Cracow, T. Aumann et al. GSI, G. de Angelis et al. LNL Italy, S. Lenzi et al., University of Padua, C. Petrache et al. University of Camerino, G. La Rena, University of Napels, F. Azaiez, CEA Orsay

Spokesperson: Angela Bracco University of Milano,

- Giant Resonances are simple excitation modes to learn about nuclear structure and effective N-N interaction
- · For GDR is on discussion how its strength function evolves when going from stable to exotic nuclei
- · In neutron rich nuclei some GDR strength is shifted at low energy (Pygmy Resonance) and this has astrophysical implication



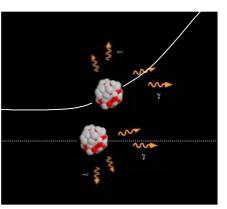

γ-decay of the GDR in the Exotic Nucleus ⁶⁸Ni Excited via Coulomb Excitation

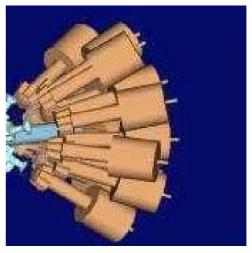
Relativistic RPA (Vretenar et al.)

RPA (Colo' et al.)

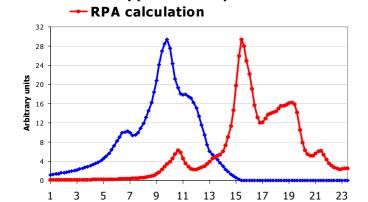
10

Both theories predict \approx 10% of the strength function at \approx 10 MeV for ⁶⁸Ni (Pygmy Resonance)


γ -decay of the GDR in the Exotic Nucleus ⁶⁸Ni Excited via Coulomb Excitation



BaF₂ for the whole GDR strength function



Experimental Details

Rising for the Pygmy part

Energy [MeV]

- + Doppler and response function

 68 Ni (400 MeV/A) + nat Pb (2 g/cm²)

The detector response for the 68 Ni GDR if BaF₂ are placed at backward angles is shifted by ≈ 5 MeV. This allows to separate target emission which is at rest and centered at 14 MeV

γ -decay of the GDR in the Exotic Nucleus ⁶⁸Ni Excited via Coulomb Excitation

Count rate estimates

```
^{68}Ni beam from fragmentation of ^{86}Kr (10^{10} pps ) on ^{9}Be \Rightarrow 2.5 10^{4} pps
```

68 Ni (400 MeV/A) + nat Pb (2 g/cm²)

```
\begin{array}{lll} \sigma_{coul} &=& 600 \text{ mb (E} \approx 15 \text{ MeV)} \\ \sigma_{coul} &=& 150 \text{ mb (E} \approx 10 \text{ MeV)} \\ \epsilon_{BaF2} & (10 \text{ MeV}) &=& 1.1 \text{ \%} \\ \epsilon_{Rising} & (15 \text{ MeV}) &=& 0.4 \text{ \%} \\ \gamma\text{-decay branch} &=& 2 \text{ \%} \end{array}
```

 BaF_2 : Cts/day (5-13 MeV) \approx 2514 (60 in 0.2 MeV bins)

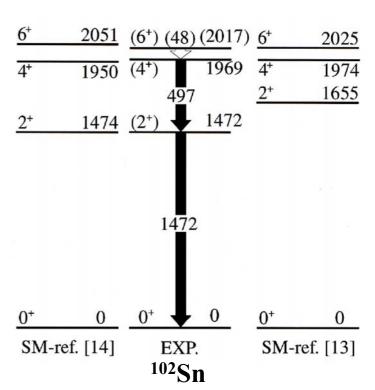
 $HpGe: Cts/day (15-17 MeV) \approx 230$

2⁺ peak gated by the whole GDR: Cts/day ≈ 70

γ-decay of the GDR in the Exotic Nucleus 68Ni Excited via Coulomb Excitation

Concluding Remarks

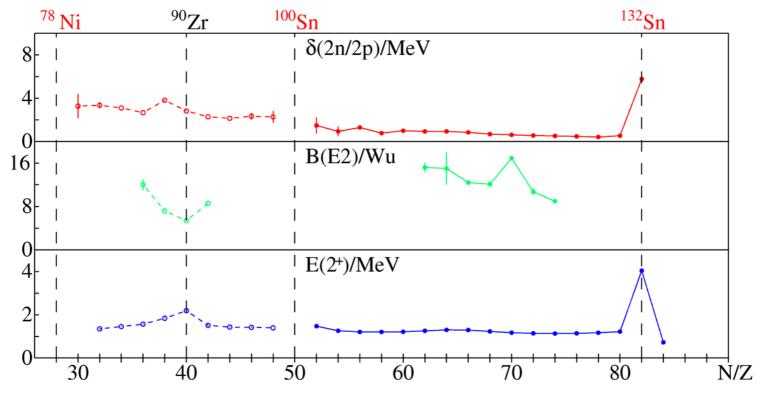
- This experiment is complementary to the work done by the LAND group using the break-up fragment and neutrons (virtual photon absorption).
- The two methods are independent from each other and allow for a cross checking.
- The gamma measurement may provide a better resolution allowing to resolve fine structure.


Relativistic Coulomb Excitation of Nuclei Near ¹⁰⁰Sn

Collaboration: C. Fahlander et al. Lund University, M. Gorska et al. GSI, J. Nyberg et al. Uppsala University, B. Cederwall et al. Royal Institute of Technology, Stockholm, M. Benteley Keele University, G. de Angelis et al. LNL Italy, M. Palacz et al. Warsaw University, D. Sohler et al. Institute for Nuclear Research, Debrecen, P. Nolan et al. Liverpool University

Spokesperson: C. Fahlander, Lund University, M. Gorska, GSI

- Future experiments (next generation of RIB facility) will allow spectroscopy of ¹⁰⁰Sn.
- Closest neighbours to ¹⁰⁰Sn with measured excited states are ¹⁰²Sn and ⁹⁸Cd.
- Lifetimes and decay schemes of low-lying isomeric 6+ states in even Sn up to ¹⁰²Sn are known.



Lipoglavsek et al. PLB 440 (1998)246

Relativistic Coulomb Excitation of Nuclei Near ¹⁰⁰Sn

- $B(E2,2^+->0^+)$ values will provide sensitive measure of the E2 correlations related to core polarization.
- Lifetime measurements by Doppler methods are hampered by higher lying isomeric states.
- States decay too fast for electronic timing methods.
- · Coulomb excitation is only way to obtain B(E2,2+->0+) values

Relativistic Coulomb Excitation of Nuclei Near ¹⁰⁰Sn

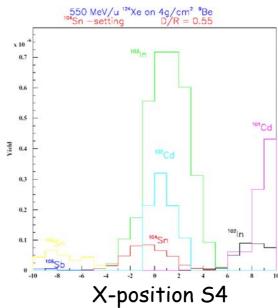
Nuclei of interest:

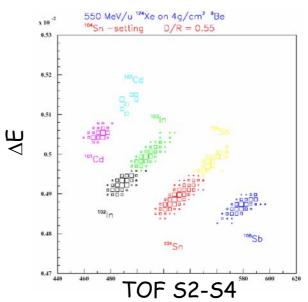
Z=50 isotopes ^{104,106,108,110}Sn N=50 isotones ⁹⁴Ru, ⁹⁶Pd, ⁹⁸Cd

• Odd Sn isotopes -> stretched E2 transitions between $2d_{5/2}$ - $3s_{1/2}$ states.

Count rate estimates for ¹⁰⁴Sn

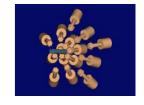
Coulomb excitation


 104 Sn (95 MeV/A) -> 208 Pb (200 mg/cm²)


 σ_{coul} = 200 mb (E \approx 1.47 MeV)

 $\varepsilon_{\text{Rising}}$ = 3.0 % (E \approx 1.3 MeV)

Yield of 104Sn at S4: 370 pps

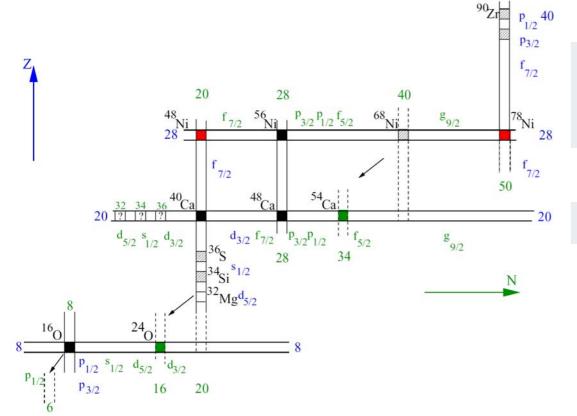

Estimated py rate for 104 Sn (2+): 3 h

Relativistic Coulomb Excitation of Nuclei Near ¹⁰⁰Sn

Isotope	σ(¹²⁴ Xe) [mb]	I _{py} /h	
¹⁰⁴ Sn	5.6 10 ⁻³	3	
¹⁰⁵ Sn	5.0 10 ⁻²	27	
¹⁰⁶ Sn	0.3	161	
¹⁰⁷ Sn	1.3	170	
¹⁰⁸ Sn	3.7	490	
¹⁰⁹ Sn	7.4	~500	
¹¹⁰ Sn	11.3	~500	
¹¹² Sn	12.4	~500	
⁹⁶ Pd	6.4 10 ⁻²	30	
⁹⁴ Ru	2.9	~500	

New Shell Structure at N>>Z RISING Relativistic Coulex in N=28-34, N=40-50 Nuclei

Collaboration: , H. Grawe, M. Gorska J. Döring, C. Plettner et al. GSI,

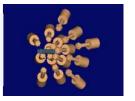

C. Fahlander et al. Lund University,

H. Hübel, A. Neusser, P. Bringel, A. Bürger, et al. Bonn University,

P. Reiter, et al. Cologne University

Spokesperson: H. Grawe GSI, H. Hübel Bonn University,

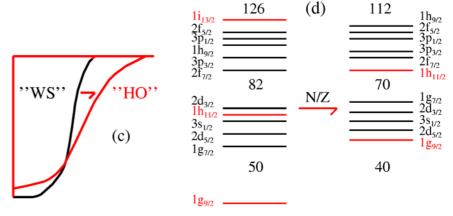
P. Reiter, Cologne University



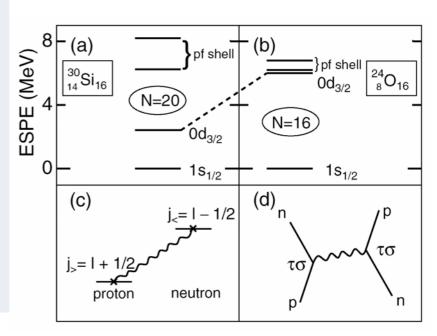
- N~50 isotones
- Ni isotopes N>68

Ca isotopes, N~34

New Shell Structure at N>>Z RISING Relativistic Coulex in N=28-34, N=40-50 Nuclei

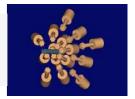


Reduced spin-orbit LS splitting:


- Neutron excess->Modified weaker surface slope of neutron potential.
- Woods-Saxon shape changes towards harmonic oscillator.
- LS splitting ~ potential slope harmonic oscillator magic numbers.

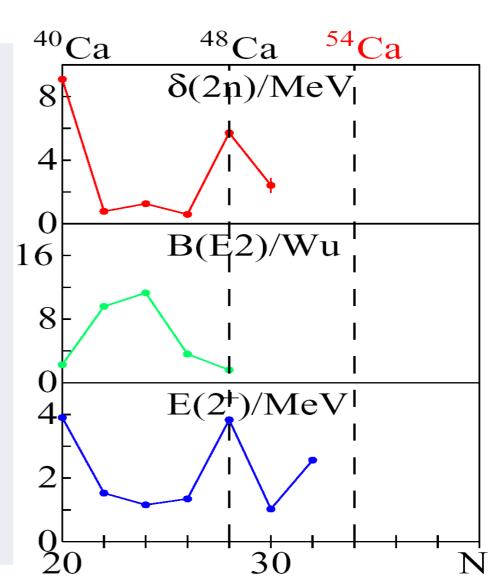
Increased spin-orbit LS splitting:

- -Monopole part of nucleon-nucleon residual interaction strongest in the S=0 (spin-flip) and T=0 (isospin-flip, proton-neutron) channel of the two body interaction.
- Missing S=0 proton partners at N>>Z cause monopole shifts of neutron single particle orbits.
- -New shell gaps

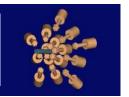


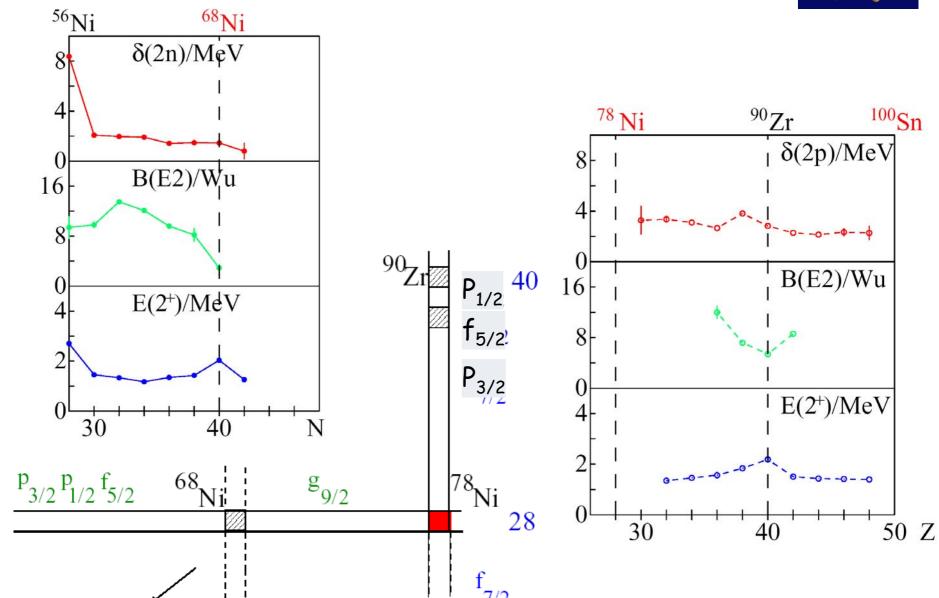
Dobaczewski et al. PRL 72 (1994) 981

New Shell Structure at N>>Z - Relativistic Coulex in N=28-34, N=40-50 Nuclei



Sub shell closure at N=32,34?


- Ca Isotopes: ⁵²Ca E(2+) energy
- Cr Isotopes: Maximum E(2+) energy at N=32
- N=34 isotones: increasing E(2⁺) energy from Fe to Cr


Experiments:

- -Masses are challenging
- -E(2^+) energies, B(E2) values in N=30-34 nuclei of Ca, Cr, Ti

New Shell Structure at N>>Z RISING Relativistic Coulex in N=28-34, N=40-50 Nuclei

New Shell Structure at N>>Z RISING Relativistic Coulex in N=28-34, N=40-50 Nuclei

Count rate estimates:

• 50Ca, N=30

 $50Ca (108 \text{ MeV/A}) \rightarrow 208 \text{Pb} (1000 \text{ mg/cm}^2)$

Yield of ⁵⁰Ca at S4: 263 pps

Estimated py rate for ${}^{50}Ca$ (2+): 14/h

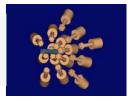
•66Fe, N=40

 66 Fe (130 MeV/A) -> 208 Pb (1000 mg/cm²)

Yield of ⁵⁰Ca at S4: 177 pps

Estimated py rate for 66 Fe (2+): 34/h

•82Ge, N=50


 $^{82}Ge (133 \text{ MeV/A}) \rightarrow ^{208}Pb (200 \text{ mg/cm}^2)$

Yield of 82Ge at S4: 620 pps

Estimated py rate for ^{82}Ge (2+): 50/h

New Shell Structure at N>>Z -RISING Relativistic Coulex in N=28-34, N=40-50 Nuclei

Count Rate Estimates							
Isotope	σ(⁸² Se) [b]	σ(⁸⁶ Kr) [b]	I _{RIB} [pps]	I _{pγ} /h	Priority/Comment		
⁵⁰ Ti	2.3 10 ⁻³	1.5 10 ⁻³	2.5 10 ⁵	4500	I calibration		
⁵² Ti	3.2 10 ⁻⁴	1.5 10 ⁻⁴	2.5 10 ⁴	1540	1		
⁵⁴ Ti	2.3 10 ⁻⁵	8.2 10 ⁻⁶	1350	83	1		
⁵⁶ Ti	1.0 10 ⁻⁶	2.6 10 ⁻⁷	40	2	I difficult		
⁸² Ge	-	8.7 10 ⁻⁷	620	50	II		
⁸⁴ Se	-	4.7 10 ⁻⁴	3.3 10 ⁵	29	II		
⁸⁶ Kr	-		10 ⁶	-	II calibration		
⁵⁸ Cr	1.0 10 ⁻⁴	3.7 10 ⁻⁵	8700	678	III		
⁶⁰ Fe	2.7 10 ⁻³	1.3 10 ⁻³	3.5 10 ⁵	1380	III calibration		
⁶⁶ Fe	2.8 10 ⁻⁶	4.5 10 ⁻⁷	177	34			
⁶⁸ Fe	1.5 10 ⁻⁷	1.4 10 ⁻⁸	5.5	1.1	not feasible		
⁷⁰ Ni	4.0 10 ⁻⁵	3.5 10 ⁻⁶	1380	130	GANIL?		
⁷² Ni	2.5 10 ⁻⁶	1.8 10 ⁻⁷	83	9	III		
⁷⁴ Ni	1.4 10 ⁻⁷	8.7 10 ⁻⁹	4	0.4	not feasible		
⁵⁰ Ca	4.5 10 ⁻⁶	1.6 10 ⁻⁶	263	14	III		
⁵² Ca	1.4 10 ⁻⁷	3.6 10 ⁻⁸	6	0.01	not feasible		

Summary Fast beam Experiments

	Sec. beam	NoI	pγ coinc
Isospin Symmetry, Coulomb Effects	⁴⁶ Cr 1 10 ³ pps	⁴⁵ Cr	18 h ⁻¹
Towards the Proton Drip-Line	⁴⁶ Ti 2 10 ³ pps	⁴⁵ Sc	440 h ⁻¹
	⁵⁴ Ni 8 10 ² pps	⁵³ Ni	10 h ⁻¹
	⁵⁴ Fe 2 10 ³ pps	⁵³ Mn	580 h ⁻¹
Relativistic Coulomb Excitation of	¹⁰⁸ Sn 4 10 ⁴ pps	¹⁰⁸ 5n	490 h ⁻¹
Nuclei Near 100Sn	¹⁰⁴ Sn 4 10 ² pps	¹⁰⁴ Sn	3 h ⁻¹
γ -decay of the GDR in ⁶⁸ Ni	⁶⁸ Ni 2 10 ⁴ pps	⁶⁸ Ni	6 h ⁻¹
Excited via Coulomb Excitation		pBaF:	64 h ⁻¹
New Shell Structure at N>>Z	⁵⁰ Ca 263 pps	⁵⁰ C a	14 h ⁻¹
Relativistic Coulex in N=28-34	⁶⁶ Fe 177 pps	⁶⁶ Fe	34 h ⁻¹
and N=40-50 Nuclei	82 <i>Ge</i> 620 nns	82 Ge	50 h ⁻¹

82Ge 620 pps

82**Ge**

50 h⁻¹