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• Capture is the first decisive step for the fusion

• Definition of a semi-microscopic potential (SMP) in the entrance channel

• SMP for cold-fusion systems

• SMP for hot-fusion systems

• SMP for warm-fusion systems

• Conclusion



Definition of a semi-microscopic potential (SMP)
in the entrance channel

The interaction potential V (R, ϑ)

V (R, ϑ) = E12(R, ϑ)− E1 − E2.

In the frozen-density approximation these binding energies are determinated

by the energy density functional E [ρp(r), ρn(r)], i.e.

E12(R, ϑ) =

∫
E [ρ1p(r) + ρ2p(R, ϑ, r), ρ1n(r) + ρ2n(R, ϑ, r)] dr,

E1 =

∫
E [ρ1p(r), ρ1n(r)] dr,

E2 =

∫
E [ρ2p(r), ρ2n(r)] dr,

where ρ1p, ρ2p, ρ1n and ρ2n are the frozen proton and neutron densities of the

spherical nucleus (index 1) and the deformed nucleus (index 2), respectively.

Energy-density functional:

E [ρp(r), ρn(r)] =
�

2
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[τp(r) + τn(r)] + VSkyrme(r) + VCoul(r).

ρ1p(r), ρ2p(R, ϑ, r), ρ1n(r), ρ2n(R, ϑ, r) ⇒ Hartree-Fock-Bogoliubov (HFB)

with Skyrme forces.



The kinetic parts for the protons (i = p) and neutrons (i = n)
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where W0 - the strength of the Skyrme spin-orbit interaction, ρ = ρp + ρn,
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The potential part Vsk, Skyrme interaction,
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where t0, t1, t2, x0, x1, x2, α and W0 are Skyrme force parameters.

The Coulomb energy density
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Entrance channel dynamics
The nuclear interaction time τcoll (collision time)

τcoll ≈ π

ωpocket
= π

[
mA1A2

(A1 + A2)V ′′(Rpocket)

]1/2

≈ 3 · 10−22s.

The relaxation of the intrinsic nuclear state due to nucleon-nucleon interac-

tions τrelax (G.F. Bertsch)

τrelax ≈ εF

3.2σvFρ0E∗ ≈ 2 · 10−22

E∗ s ≈ 3 · 10−21s.

τrelax >> τcoll.

Conclusion: Frozen-densities of nucleons in nuclei can be applied for the

evaluation of the nucleus-nucleus potential.



Main features of SMP in light systems:

• Deep pocket inside the barrier

• Light ions easily fuse after tunneling through or passing over the barrier

• The barrier height and the potential pocket are well above the ground-state

energy

• The potential surface exhibits large gradients in the fusion direction driving

the system into the compound-nucleus shape

• The barriers obtained with the help Bass-74, Bass-80, Proximity-77 and

Krappe-Nix-Sierk (KNS) potentials are spread over a wide interval



• The Bass-74, -80, Prox-77 and KNS interaction potentials are spread over

even larger intervals for heavier systems as compared to light system

• The potential pockets are much shallower than for lighter systems and

tend to vanish with increasing size of the projectile

• We attribute the observed reduction of the SHE formation with increasing

size of the projectile, at least partially, to decreasing pocket depth

• The observed fusion windows lie about 5 to 10 MeV below SMP barriers.

• There is a correlation between the width of fusion window and the depth

of potential pocket (cases 50Ti+208Pb, 58Fe+208Pb and 64Ni+208Pb)



• The difference between the barrier position and the ground-state Q-value

for fusion decreases with increasing charge of the projectile



Symmetric systems

• The capture process is suppressed by the shallowness of the potential

pocket

• The shape of the system at capture is less compact, and hence a longer

shape evolution is needed to reach the compound-nucleus shape.

⇒ the formation probability of compound nucleus is reduced due to the

larger competition of other decays



Large distances between spherical and prolate nuclei ⇒ ϑ = 90◦

due to the Coulomb interaction (ϑ = 90◦ ⇔ side position)

The time for the rotating the deformed nucleus by 90◦

τrot ≈ π

2ωrot
= 2 · 10−20 s,

where �ωrot ≈ 50 keV. Typical collision times on the approaching part of the

Coulomb trajectory are order 2 · 10−21 s.

• Strong orientation effect on the barrier and pocket, strongly deformed

plolate target

• High excitation energy of compound nucleus

• Fusion relates with side orientation (ϑ ≈ 90◦)

• Fusion suppressed for tip position (ϑ ≈ 0◦)

• The height of the barrier reduces with increasing neutron number



Warm-fusion systems
198Pt - oblate -β2 = −0.10

Recent GSI experiment: 40Ar,50Ti+198Pt.

The cross sections for reaction 50Ti+198Pt is comparable with the one for cold-

fusion reaction 40Ar+208Pb.

Large distances between spherical and oblate nuclei ⇒ ϑ = 0◦

due to the Coulomb interaction (ϑ = 0◦ ⇔ ’tip’ position)



Conclusion
Rules for the determination of the best candidates for the

synthesis of SHEs

• The SMP barrier should lie about 5 to 15 MeV above the 1n fusion thresh-

old, but not above the 2n fusion threshold to avoid the reduction of the

fusion cross-section by an additional factor Γn/Γf

• The deeper the pocket ⇒ the larger the capture window ⇒ better the

chance of synthesis

• It is best to have a most compact capture configuration



The synthesis of 118
with hot-, cold- and warm-fusion systems

• The cold-fusion system 86Kr+208Pb has its capture window below the 1n-

fusion channel and shallow pocket, and hence is not expected to be a good

candidate

• The symmetric system 144Ce+150Nd has no pocket and hence no capture

window at all

• The hot-fusion system 48Ca+252Cf has nice capture properties, however

needs to emit about 3 to 4 neutrons, which reduce the survival probability

by several orders due to factor Γn/Γf << 1

• The hot-fusion system 40Ca+252Cf has less attractive capture properties

(as compared to the 48Ca case) and needs to emit even 5 to 6 neutrons

• The system 58Fe+238U has only a tiny pocket and needs to emit about 3-4

neutrons

• the warm-fusion system 96Zr+198Pt has also a tiny tip-positioned pocket

but needs to emit only 1n

The most attractive projectile-target are:

48Ca+252Cf at Ecoll ≈ 206 MeV

96Zr+198Pt at Ecoll ≈ 330 MeV.

While 48Ca+252Cf is more compact, 96Zr+198Pt needs to emit only 1 neutron.

It is hard to judge which of these features are more important






