# Entrance-channel potentials in the synthesis of the heaviest nuclei 

Vitali Yu. DENISOV ${ }^{1,2}$ and Wolfgang Nörenberg ${ }^{1,3}$

${ }^{1}$ Gesellschaft für Schwerionenforschung, Darmstadt, Germany<br>${ }^{2}$ Institute for Nuclear Research, Kiev, Ukraine<br>${ }^{3}$ Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany

Plan

- Capture is the first decisive step for the fusion
- Definition of a semi-microscopic potential (SMP) in the entrance channel
- SMP for cold-fusion systems
- SMP for hot-fusion systems
- SMP for warm-fusion systems
- Conclusion


## Definition of a semi-microscopic potential (SMP) in the entrance channel

The interaction potential $V(R, \vartheta)$

$$
V(R, \vartheta)=E_{12}(R, \vartheta)-E_{1}-E_{2} .
$$

In the frozen-density approximation these binding energies are determinated by the energy density functional $\mathcal{E}\left[\rho_{p}(\mathbf{r}), \rho_{n}(\mathbf{r})\right]$, i.e.

$$
\begin{aligned}
& E_{12}(R, \vartheta)=\int \mathcal{E}\left[\rho_{1 p}(\mathbf{r})+\rho_{2 p}(R, \vartheta, \mathbf{r}), \rho_{1 n}(\mathbf{r})+\rho_{2 n}(R, \vartheta, \mathbf{r})\right] d \mathbf{r}, \\
& E_{1}=\int \mathcal{E}\left[\rho_{1 p}(\mathbf{r}), \rho_{1 n}(\mathbf{r})\right] d \mathbf{r}, \\
& E_{2}=\int \mathcal{E}\left[\rho_{2 p}(\mathbf{r}), \rho_{2 n}(\mathbf{r})\right] d \mathbf{r},
\end{aligned}
$$

where $\rho_{1 p}, \rho_{2 p}, \rho_{1 n}$ and $\rho_{2 n}$ are the frozen proton and neutron densities of the spherical nucleus (index 1) and the deformed nucleus (index 2), respectively.

Energy-density functional:

$$
\mathcal{E}\left[\rho_{p}(\mathbf{r}), \rho_{n}(\mathbf{r})\right]=\frac{\hbar^{2}}{2 m}\left[\tau_{p}(\mathbf{r})+\tau_{n}(\mathbf{r})\right]+\mathcal{V}_{\text {Skyrme }}(\mathbf{r})+\mathcal{V}_{\text {Coul }}(\mathbf{r}) .
$$

$\rho_{1 p}(\mathbf{r}), \rho_{2 p}(R, \vartheta, \mathbf{r}), \rho_{1 n}(\mathbf{r}), \rho_{2 n}(R, \vartheta, \mathbf{r}) \Rightarrow$ Hartree-Fock-Bogoliubov (HFB) with Skyrme forces.

The kinetic parts for the protons $(i=p)$ and neutrons $(i=n)$

$$
\begin{aligned}
\tau_{i}(\mathbf{r})= & \frac{3}{5}\left(3 \pi^{2}\right)^{2 / 3} \rho_{i}^{5 / 3}+\frac{1}{36} \frac{\left(\nabla \rho_{i}\right)^{2}}{\rho_{i}}+\frac{1}{3} \Delta \rho_{i} \\
+ & \frac{1}{6} \frac{\nabla \rho_{i} \nabla f_{i}+\rho_{i} \Delta f_{i}}{f_{i}}-\frac{1}{12} \rho_{i}\left(\frac{\nabla f_{i}}{f_{i}}\right)^{2} \\
& +\frac{1}{2} \rho_{i}\left(\frac{2 m}{\hbar^{2}} \frac{W_{0}}{2} \frac{\nabla\left(\rho+\rho_{i}\right)}{f_{i}}\right)^{2}
\end{aligned}
$$

where $W_{0}$ - the strength of the Skyrme spin-orbit interaction, $\rho=\rho_{p}+\rho_{n}$,

$$
f_{i}(\mathbf{r})=1+\frac{2 m}{\hbar^{2}}\left(\frac{3 t_{1}+5 t_{2}}{16}+\frac{t_{2} x_{2}}{4}\right) \rho_{i}(\mathbf{r})
$$

The potential part $\mathcal{V}_{\mathrm{sk}}$, Skyrme interaction,

$$
\begin{array}{r}
\mathcal{V}_{\text {Skyrme }}(\mathbf{r})=\frac{t_{0}}{2}\left[\left(1+\frac{1}{2} x_{0}\right) \rho^{2}-\left(x_{0}+\frac{1}{2}\right)\left(\rho_{p}^{2}+\rho_{n}^{2}\right)\right] \\
+\frac{1}{12} t_{3} \rho^{\alpha}\left[\left(1+\frac{1}{2} x_{3}\right) \rho^{2}-\left(x_{3}+\frac{1}{2}\right)\left(\rho_{p}^{2}+\rho_{n}^{2}\right)\right] \\
+\frac{1}{4}\left[t_{1}\left(1+\frac{1}{2} x_{1}\right)+t_{2}\left(1+\frac{1}{2} x_{2}\right)\right] \tau \rho \\
+\frac{1}{4}\left[t_{2}\left(x_{2}+\frac{1}{2}\right)-t_{1}\left(x_{1}+\frac{1}{2}\right)\right]\left(\tau_{p} \rho_{p}+\tau_{n} \rho_{n}\right) \\
+\frac{1}{16}\left[3 t_{1}\left(1+\frac{1}{2} x_{1}\right)-t_{2}\left(1+\frac{1}{2} x_{2}\right)\right](\nabla \rho)^{2} \\
\left.-\frac{W_{0}^{2}}{4} \frac{2 m}{\hbar^{2}}\left[\frac{\rho_{p}}{f_{p}}\left(2 \nabla t_{1}\left(x_{1}+\frac{1}{2}\right)+t_{2}\left(x_{2}+\frac{1}{2}\right)\right]\left(\nabla \rho_{n}\right)^{2}+\left(\nabla \rho_{p}\right)^{2}\right)+\frac{\rho_{n}}{f_{n}}\left(2 \nabla \rho_{n}+\nabla \rho_{p}\right)^{2}\right],
\end{array}
$$

where $t_{0}, t_{1}, t_{2}, x_{0}, x_{1}, x_{2}, \alpha$ and $W_{0}$ are Skyrme force parameters.
The Coulomb energy density

$$
\mathcal{V}_{\mathrm{Coul}}(\mathbf{r})=\frac{e^{2}}{2} \rho_{p}(\mathbf{r}) \int \frac{\rho_{p}(\mathbf{r} \prime)}{|\mathbf{r}-\mathbf{r} \prime|} d \mathbf{r} \prime-\frac{3 e^{2}}{4}\left(\frac{3}{\pi}\right)^{1 / 3}\left(\rho_{p}(\mathbf{r})\right)^{4 / 3}
$$

## Entrance channel dynamics

The nuclear interaction time $\tau_{\text {coll }}$ (collision time)

$$
\tau_{\text {coll }} \approx \frac{\pi}{\omega_{\text {pocket }}}=\pi\left[\frac{m A_{1} A_{2}}{\left(A_{1}+A_{2}\right) V^{\prime \prime}\left(R_{\text {pocket }}\right)}\right]^{1 / 2} \approx 3 \cdot 10^{-22} \mathrm{~s} .
$$

The relaxation of the intrinsic nuclear state due to nucleon-nucleon interactions $\tau_{\text {relax }}$ (G.F. Bertsch)

$$
\tau_{\mathrm{relax}} \approx \frac{\epsilon_{F}}{3.2 \sigma v_{F} \rho_{0} E^{*}} \approx \frac{2 \cdot 10^{-22}}{E^{*}} \mathrm{~S} \approx 3 \cdot 10^{-21} \mathrm{~S}
$$

$$
\tau_{\text {relax }} \gg \tau_{\text {coll }}
$$

Conclusion: Frozen-densities of nucleons in nuclei can be applied for the evaluation of the nucleus-nucleus potential.


## Main features of SMP in light systems:

- Deep pocket inside the barrier
- Light ions easily fuse after tunneling through or passing over the barrier
- The barrier height and the potential pocket are well above the ground-state energy
- The potential surface exhibits large gradients in the fusion direction driving the system into the compound-nucleus shape
- The barriers obtained with the help Bass-74, Bass-80, Proximity-77 and Krappe-Nix-Sierk (KNS) potentials are spread over a wide interval

- The Bass-74, -80, Prox-77 and KNS interaction potentials are spread over even larger intervals for heavier systems as compared to light system
- The potential pockets are much shallower than for lighter systems and tend to vanish with increasing size of the projectile
- We attribute the observed reduction of the SHE formation with increasing size of the projectile, at least partially, to decreasing pocket depth
- The observed fusion windows lie about 5 to 10 MeV below SMP barriers.
- There is a correlation between the width of fusion window and the depth of potential pocket (cases ${ }^{50} \mathrm{Ti}+{ }^{208} \mathrm{~Pb},{ }^{58} \mathrm{Fe}+{ }^{208} \mathrm{~Pb}$ and ${ }^{64} \mathrm{Ni}+{ }^{208} \mathrm{~Pb}$ )
- The difference between the barrier position and the ground-state $Q$-value for fusion decreases with increasing charge of the projectile



## Symmetric systems

- The capture process is suppressed by the shallowness of the potential pocket
- The shape of the system at capture is less compact, and hence a longer shape evolution is needed to reach the compound-nucleus shape.
$\Rightarrow$ the formation probability of compound nucleus is reduced due to the larger competition of other decays



## Large distances between spherical and prolate nuclei $\Rightarrow \vartheta=90^{\circ}$

due to the Coulomb interaction $\left(\vartheta=90^{\circ} \Leftrightarrow\right.$ side position $)$
The time for the rotating the deformed nucleus by $90^{\circ}$

$$
\tau_{\mathrm{rot}} \approx \frac{\pi}{2 \omega_{\mathrm{rot}}}=2 \cdot 10^{-20} \mathrm{~s},
$$

where $\hbar \omega_{\text {rot }} \approx 50 \mathrm{keV}$. Typical collision times on the approaching part of the Coulomb trajectory are order $2 \cdot 10^{-21} \mathrm{~s}$.

- Strong orientation effect on the barrier and pocket, strongly deformed plolate target
- High excitation energy of compound nucleus
- Fusion relates with side orientation $\left(\vartheta \approx 90^{\circ}\right)$
- Fusion suppressed for tip position $\left(\vartheta \approx 0^{\circ}\right)$
- The height of the barrier reduces with increasing neutron number


## Warm-fusion systems

## ${ }^{198} \mathrm{Pt}$ - oblate $-\beta_{2}=-0.10$

## Recent GSI experiment: ${ }^{40} \mathrm{Ar},{ }^{50} \mathrm{Ti}+{ }^{198} \mathrm{Pt}$.

The cross sections for reaction ${ }^{50} \mathrm{Ti}+{ }^{198} \mathrm{Pt}$ is comparable with the one for coldfusion reaction ${ }^{40} \mathrm{Ar}+{ }^{208} \mathrm{~Pb}$.

Large distances between spherical and oblate nuclei $\Rightarrow \vartheta=0^{\circ}$ due to the Coulomb interaction $\left(\vartheta=0^{\circ} \Leftrightarrow\right.$ 'tip' position)


## Conclusion

Rules for the determination of the best candidates for the synthesis of SHEs

- The SMP barrier should lie about 5 to 15 MeV above the 1 n fusion threshold, but not above the 2 n fusion threshold to avoid the reduction of the fusion cross-section by an additional factor $\Gamma_{n} / \Gamma_{f}$
- The deeper the pocket $\Rightarrow$ the larger the capture window $\Rightarrow$ better the chance of synthesis
- It is best to have a most compact capture configuration


## The synthesis of 118 <br> with hot-, cold- and warm-fusion systems

- The cold-fusion system ${ }^{86} \mathrm{Kr}+{ }^{208} \mathrm{~Pb}$ has its capture window below the $1 \mathrm{n}-$ fusion channel and shallow pocket, and hence is not expected to be a good candidate
- The symmetric system ${ }^{144} \mathrm{Ce}+{ }^{150} \mathrm{Nd}$ has no pocket and hence no capture window at all
- The hot-fusion system ${ }^{48} \mathrm{Ca}+{ }^{252} \mathrm{Cf}$ has nice capture properties, however needs to emit about 3 to 4 neutrons, which reduce the survival probability by several orders due to factor $\Gamma_{n} / \Gamma_{f} \ll 1$
- The hot-fusion system ${ }^{40} \mathrm{Ca}+{ }^{252} \mathrm{Cf}$ has less attractive capture properties (as compared to the ${ }^{48} \mathrm{Ca}$ case) and needs to emit even 5 to 6 neutrons
- The system ${ }^{58} \mathrm{Fe}+{ }^{238} \mathrm{U}$ has only a tiny pocket and needs to emit about 3-4 neutrons
- the warm-fusion system ${ }^{96} \mathrm{Zr}+{ }^{198} \mathrm{Pt}$ has also a tiny tip-positioned pocket but needs to emit only 1n

The most attractive projectile-target are:

$$
\begin{aligned}
& { }^{48} \mathrm{Ca}+{ }^{252} \mathrm{Cf} \text { at } E_{\text {coll }} \approx 206 \mathrm{MeV} \\
& { }^{96} \mathrm{Zr}+{ }^{198} \mathrm{Pt} \text { at } E_{\text {coll }} \approx 330 \mathrm{MeV} .
\end{aligned}
$$

While ${ }^{48} \mathrm{Ca}+{ }^{252} \mathrm{Cf}$ is more compact, ${ }^{96} \mathrm{Zr}+{ }^{198} \mathrm{Pt}$ needs to emit only 1 neutron. It is hard to judge which of these features are more important



