

Chemical Identification of Hassium (Hs, Z=108) and Prospects for Future Studies

Christoph Düllmann for the Hassium Collaboration

Presented on the "Workshop on Recoil Separator for Superheavy Element Chemistry". March 20-21, 2002, GSI, Darmstadt, Germany

The Hassium - Collaboration

Ch.E. Düllmann, R. Dressler, B. Eichler, H.W. Gäggeler, F. Glaus, D.T. Jost, D. Piguet, S. Soverna, A. Türler

W. Brüchle, R. Eichler, E. Jäger, V. Pershina, M. Schädel, B. Schausten, E. Schimpf, H.-J. Schött, G. Wirth

- K. Eberhardt, P. Thörle, N. Trautmann
- S.N. Timokhin, A.B. Yakushev

T.N. Ginter, K.E. Gregorich, D.C. Hoffman, U.W. Kirbach, D.M. Lee, H. Nitsche, J.B. Patin, R. Sudowe, P.M. Zielinski

A. Vahle

Z. Qin

Outline

Introduction

The Periodic Table Thermochromatography

Present

The Hassium-Experiment

Setup: IVO & COLD

Chemistry: Classification of Hs in the PTE Volatility of HsO₄

Physics:

Confirmation of E112-discovery Evidence for ²⁷⁰Hs

Future? Organometallic Hs Compounds?

-																	
1	_															_	18
1																	2
Н	2	1										13	14	15	16	17	Не
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
κ	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
55	56	57+*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89+"	104	105	106	107		_									
Fr	Ra	Ac	Rf	Db	Sg	Bh	108				112			_			
							Hs	109	110	111	Uub		114		116		
								Mt	Uun	Uuu		•	Uuq		Uuh		
											•			•			
		*	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			00	01	00	02	04	05	06	07	00	00	100	101	100	100	
			90	91	92	93	94	95	90	97	90	99	100	101	102	103	

The Periodic Table of the Elements

Thermochromatography

IVO + COLD:

In situ Volatilization and On-line detection apparatus

Cryo-On-Line Detector

Cut out of the chart of nuclides

²⁴⁸Cm(²⁶Mg;5,4n)²⁶⁹Hs,²⁷⁰Hs

									·	I
	Hs	Hs 263 ?	Hs 264	Hs 265	Hs 266	Hs 267		Hs 269		
α	108	? α	0,45 ms α 10.43; sf (50%)	870 μs 1,8 ms ^{α 10,51-} α 10,37	2,3 ms ^{α 10,18}	59 ms α 9,88; 9,83; 9,75		<mark>11,3 s</mark> ∝ 9,14-9,23	 	¦
	Bh	Bh 262		Bh 264		Bh 266	Bh 267		1	1
	107	4,7 ms 114 ms α 10,38 α 9,70		440 ms α 9,48; 9,62		<mark>~1 s</mark> ∝ 9,29	15.2 s _{α 8,83}			
SE	Sg	Sg 261	Sg 262	Sg 263		Sg 265	Sg 266		i	I
	106	<mark>111 ms</mark> α 9,56; 9,52;9,47	6,9 ms ^{sf}	0,3 s 0,9 s α 9,25 α 9,06; 9,25; sf		<mark>7,4 s</mark> ∝ 8,69-8,94; sf≤35%	17,8 s ∝ 8,72; 8,59; sf≤82%		I I	1
	Db	Db 260	Db 261	Db 262	Db 263		<u> </u>		I I	1
FC	105	<mark>1,5 s</mark> ∝ 9,04; 9,12; ∈/sf?	<mark>1,8 s</mark> α 8,93; sf	<mark>α 8,45; 8,53;</mark> 8,67; ∈/sf(33%)	<mark>α 8,36;</mark> sf (57±14%)				1	ł
EC	Rf	Rf 259	Rf 260	Rf 261	Rf 262				1	i
	104	<mark>3</mark> S ∝8,77; 8,87; st≤7%	21 ms sf;α≤20%	78 s α 8,28;sf<10%	47 ms? 2,1 s sf? sf;α≤3%				 	!
									N=16	2

Experiment Facts

OsO ₄	: Formation and transport out of the chamber	60-90%
Trans	port time to the detection system	~2-3 sec
Geom	etrical efficiency for detection of an α :	77%
Prob.	to detect at least 3 α 's of a 4 α decay chain:	66.6%
	Overall Efficiency:	30-50%
Avera	Overall Efficiency: age beam intensity:	30–50% 700 p⋅nA
Avera Targe	Overall Efficiency: age beam intensity: et thickness:	30–50% 700 p⋅nA 550 μg/cm²
Avera Targa Exped	Overall Efficiency: age beam intensity: et thickness: cted production cross section (HIVAP):	30-50% 700 p⋅nA 550 μg/cm ² 5-10 pb

Expectation: 1-2 α - α - α correlations/day

Cumulative α-Spectrum of Dets. +3 and -3 of the Hs Experiment (Dose: 1.0.10¹⁸ ²⁶Mg-particles)

Evidence for the new isotope ²⁷⁰Hs

Thermochromatogram of HsO₄ and OsO₄

Behind the target: Plasma (caused by the intense beam) destroys organic ligands

Gas Phase Chemistry: Future ?

No beam behind the target!! Separation @ BGS/ChemSep

Volatile Compounds in Group 8 Organometallic Chemistry

Metallocenes M(cp)₂

Observed in solid phase: $Fe(cp)_2 + U(n,f)Ru \rightarrow Ru(cp)_2$

(Baumgärtner et al. Z. Naturforsch. 16a (1961) 374)

$Ru(n,\gamma) + Fe(cp)_2 \rightarrow Ru(cp)_2$

(Baumgärtner et al. in: Chemical effects of nuclear transformations, IAEA Vienna 1961, p.319)

Dpm complexes (dpm=dipivaloyImethane)

Investigated with IC using carrier-free Ru from ²⁵²Cf

(Ono et al. Abstract ASR2001)

Pentacarbonyles M(CO)₅

Well-known, stable (18 e⁻)

Summary

Present

- First chemistry experiment with Hs. Cross-section level of a few pb. Seven correlated chains observed in 64 h of beam-time.
- Decay properties of ²⁶⁹Hs are in agreement with SHIP results, confirming the discovery of element 112 by Hofmann et al. Evidence for ²⁷⁰Hs was obtained
- → Hs forms a volatile tetroxide. It behaves similar to Os and is a member of group 8 of the periodic table. ΔH_a (HsO₄)=(-47±2) kJ/mol.

Future

- Availability of a pre-separator (BGS, ChemSep) allows in principle the in-situ synthesis of less robuts compounds, e.g. organometallic ones.
- Promising systems in group 8 are the metallocenes, the pentacarbonyles and the dpm (=dipivaloyImethane) system, respectively.

Thank you!

-The accelerator staff of the UNILAC @ GSI

-Mechanical and electronical workshop staff @ Univ. Bern

This work was supported in part by the Swiss National Science Foundation

unive sitata