Vacuum thermochromatography: Revival of a gas phase adsorption separation method to be coupled to a future "CHEMSEP"

R. Eichler (PSI), W. Brüchle, E. Jäger, M. Schädel and E. Schimpf (GSI)

Method

Distinction noble gas ↔ metallic → gas adsorption techniques behaviour of E112 and E114 on <u>clean</u> metal surfaces (e.g. no oxides, no ice)

Adsorption properties \rightarrow gas chromatography \rightarrow thermochromatography

→ Vacuum thermochromatography

(G. Rudstam and B. Grapengiesser 1973)

Advantages:

- + no carrier gas = less surface contamination
- + fast separation
- + good heat isolation at low temperatures
- + good α-resolution
- + comfortable coupling to physical separators

Vacuum thermochromatography setup

Results

Results

Radon Adsorption Results

	–∆H _{ads} kJ/mol
Ag	23±2
Au	29±2
Pd	35±3
Ni	38±3
Cu	39±3

Empirical model

A.R. Miedema, B.E. Nieuwenhuys Surf. Sci. 104, 491-509 (1981).

Description of ΔH_{ads} proportional to the enthalpy of adhesion:

 $\Delta \gamma^{ad}(\mathbf{A},\mathbf{B}) = -2 \Phi (\gamma^{0}(\mathbf{A}) \gamma^{0}(\mathbf{B}))^{1/2}$

$$\Delta H_{ads} = 0.71 * 10^9 F \Phi V_A^{2/3} (\gamma^0(A) \gamma^0(B))^{1/2}$$

$$\begin{split} \Phi & ... & dissimilarity parameter (calculated) \\ \gamma^0 ... & surface energy at T=0 K \\ F & ... & geometrical factor (empirically 0.31) \\ V_A & ... & Volume of the spherical adsorbate atom \end{split}$$

$\Rightarrow \Delta H^{M}_{ads}($	\mathbf{Z}) = $\mathbf{C}(\mathbf{Z}$	<i>'</i> ,Xe)* ∆	H^M ads	(Xe)
Z	Ne	Ar	Kr	Xe
C(Z,Xe)	0.17	0.52	0.72	1

Empirical correlation of C(Z, Xe)

Radon Adsorption Experimental Results⇔Model

	$-\Delta H_{ads}$	$-\Delta \mathbf{H}^{M}_{ads}$	
	kJ/mol		
Ag	23±2	26±2	
Au	29±2	33±3	
Pd	35 ±3	35±3	
Ni	38±3	37±3	
(Cu	39 ±3	25 <u>+</u> 2)	

Prediction of the adsorption behavior of E112 and E114

On-line Vacuum thermochromatography

Advantages:

- + no carrier gas = less surface contamination
- + fast separation
- + good heat isolation at low temperatures
- + good α-resolution

Problem:

- transfer of recoils

Solutions:

- A hot catcher system
- **B** coupling to physical separator
- **C** adsorber system (batch wise)

1h 400 pnA ⁴⁰Ca: vacuum 2·10⁻⁵ mbar

800 μ g/cm² lanthanide targets: 2.2 mg/cm² (5 μ m) Ti backing

Vacuum Thermochromatography at a Recoil Separator

Adsorber System (114-Chemistry)

112/114-Chemistry

