

A New Interface for Heavy Element Studies at the Berkeley Gas-filled Separator

Uwe W. Kirbach¹, Kenneth E. Gregorich¹, Victor Ninov¹, Charles M. Folden III^{1,2}, Thomas N. Ginter¹, Diana M. Lee¹, Joshua B. Patin^{1,2}, Dawn A. Shaugnessy¹, Dan A. Strellis^{1,3}, Ralf Sudowe¹, Philip A. Wilk^{1,2}, Peter M. Zielinski^{1,2}, Darleane C. Hoffman^{1,2}, and Heino Nitsche^{1,2}

¹ Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley

- ² Chemistry Department, University of California, Berkeley
- ³ Nuclear Engineering Department, University of California, Berkeley

The Berkeley Gas-filled Separator

- Construction "completed" fall 1999
- Recycled Bevalac magnets
- Innovative design gives Ω =45msr
- 70° bend gives superior separation
- ~1 mBar He fill gives full

momentum and charge acceptance

- Beam rejection up to 10¹⁵
- Transit time ~µs
- Rotating target allows beam intensities up to pµA range
- Beam intensity, target thickness, and efficiency give 1 event/(picobarn*week)

Recoil Transfer Chamber

- EVRs pass through thin MYLAR foil at BGS focal plane position
- Stop in gas at 2 atm
- Attach to aerosols
- Capillary transport to chemical separator or detector system

RTC Schematic

- Stainless steel chamber
- BGS & RTC are separated by a thin Mylar foil window (down to 1.5 µm)
- Supporting wire grid (94% transparency)
- Movable piston for different stopping ranges

RTC efficiency experiment

- Activity transport to the rotating wheel detection system (MG) via KCl/He gas-jet system using a 22 m long PE capillary (2 mm I.D.)
- Determination of the efficiency using EVRs with E_{kin}/A (\cong 215 and 51 keV/amu)
- Comparison of the activity measured in the MG with activity measured in the BGS focal plane detector

First, second, and third top detectors in the MG, stepping time 5 s

^{197m} Po, 26 s 1 2¹⁹⁶ Po, 5.5 s 3 ¹⁹⁵ Po, 4.5 s 4 ^{195m} Po, 2.0 s 5 ¹⁹⁴ Po, 0.41 s

6200

6000

5800

6600

Energy in keV

6800

7000

7200

6400

BGS focal plane detector

¹⁹⁷Au (²²Ne, xn) ²¹⁹⁻ⁿAc, EVR $E_{kin}/A \cong 51$ keV/amu

Counts

PIN diode in RTC

implanted EVR
²¹⁰Fr, 3.2 min
²¹⁴Ac, 8.2 s
²¹⁵Ac, 0.17 s
²¹⁰Rn, 2.4 h

Experimental Results using RTC

Ekin of EVR	215 keV/amu	51 keV/amu
Total Efficiency	30%	15%
Mylar foil thickness	6 µm	1.5 µm
BGS pressure	1 Torr	0.1 Torr
RTC pressure	765 Torr	550 Torr,
	Window stable for days at 2 atm pressure differential	window failure after 30 min at 765 Torr
Distance of piston from window	65 mm	50 mm
Remarks		small KCI spots on the foils

Pulse mode: 16 s on, 16 s off, stepping time 32 s, Detector under collecting point

Transport time 4 ± 1 s

Cryogenic Thermochromatographic System (CTS) and Development of Chemical Separation for HsO₄

RTC on the BGS detector box

Columns of PIN diodes (SiO₂ adsorption surface & α -particle detectors) on Cu heat conductors

CTS nearing completion

BGS-RTC-SISAK

- ²⁰⁸Pb(⁵⁰Ti,1n)²⁵⁷Rf and ²⁰⁹Bi(⁵⁰Ti,n)²⁵⁸Db produce transactinide isotopes with ~4-sec halflives at rates of several atoms per hour
- Separation in BGS and transport via 20-meter capillary to SISAK
- Liquid-liquid extractions on a few-seconds timescale
- Detection by liquid scintillation α-particle pusle height analysis w/ continuously flowing liquid
- Exciting new capabilities for transactinide chemistry
- More experiments planned for summer 2002

