Nuclear Structure Investigations in the Region of Transfermium Elements

Fritz Peter Heßberger

(GSI Darmstadt)

Why nuclear structure investigations?

Detailed study of nuclear decay is stringest test for nuclear models !

FPH - Folie 1

Experimental set-up for nuclear structure investigations

FPH - Folie 2

FPH - Folie 6

tentative decay schemes

α - spectroscopic results from ²⁰⁹Bi(⁵⁰Ti,2n)²⁵⁷Db

 $\frac{{}^{257}\text{Db}(1){:}}{253} \mathbf{Lr}(1){:} \mathbf{E}_{\alpha} = 9163 \pm 10 \text{ keV} \quad \mathbf{T}_{1/2} = \mathbf{0.76}^{+0.15}_{-0.11} \text{ s}$ $\frac{{}^{253}\text{Lr}(1){:}}{257} \mathbf{Db}(2){:} \mathbf{E}_{\alpha} = 8723 \pm 10 \text{ keV} \quad \mathbf{T}_{1/2} = \mathbf{1.49}^{+0.30}_{-0.21} \text{ s}$ $\frac{{}^{257}\text{Db}(2){:}}{\mathbf{T}_{1/2}} \mathbf{E}_{\alpha} = 9074 \pm 10 \text{ keV} (\mathbf{0.38}), 8967 \pm 10 \text{ keV} (\mathbf{0.33}) \dots$ $\mathbf{T}_{1/2} = \mathbf{1.50}^{+0.19}_{-0.15} \text{ s}$ $\frac{{}^{253}\text{Lr}(2){:}}{\mathbf{E}_{\alpha}} = 8794 \pm 10 \text{ keV} \quad \mathbf{T}_{1/2} = \mathbf{0.57}^{+0.07}_{-0.06} \text{ s}$

Decay of ²⁴⁷Md

Problems:

→ α - decay is unhindered, should connect equivalent Nilsson - levels 1/2⁻[521] (²⁴⁷Md) -- α → 1/2⁻[521] (²⁴³Es)

$$\rightarrow 1/2^{-}[521]$$
 (²⁴³Es) -- $\gamma \rightarrow 7/2^{+}[521]$ (²⁴³Es) should be E3

- → For E3, $E_{\gamma} = 210 \text{ keV}$ → $\alpha_k \approx 0.25$, $\alpha_L \approx 9$ (transition highly converted) → strong α - EC - sum line expected (at E ≈ 8640 keV)
- → Weisskopf estimation for E3, $E_{\gamma} = 210 \text{ keV}$ T ≈ 20 ms → isomeric state, no α - γ - coincidences

FPH - Folie 13

Preliminary Data

Possible transitions:

	A 1	- - -	Mult	~	
	Δι	$\pi_i \ge \pi_f$	Iviuit.	α_k	$\alpha_{\rm L}$
$1/2^- \rightarrow 7/2^+$	3	-1	E3	0.3	8.4
$1/2^- \rightarrow 3/2^-$	1	1	M1	4.3	1.0
$7/2^- \rightarrow 7/2^+$	0	-1	E 1	0.1	0.02
$7/2^- \rightarrow 3/2^-$	2	1	E2	0.15	0.7

Experimental Limits for $\alpha_{K,} \alpha_{L}$

	$\frac{^{247}\text{Md:}}{^{247}\text{Md:}} E_{\alpha} = 8430$	0 keV (841) K-conv.): E	0-8440) k C = 8430 k	eV keV +≈9	0 keV			
_	(8440-8550) keV ²⁴⁷ Md+ CE(L) (I	L-conv.): E	= 8430 ke	eV + ≈19() keV			
_	(8550-8650) keV (60%)							
		E /keV	$\Sigma(\alpha - \alpha)$		$\Sigma(\gamma K-x)$			

	E /keV	$\Sigma(\alpha - \alpha)$		$\Sigma(\gamma, K-x)$	
²⁴⁷ Md	8410-8440	17		10	
247 Md + CE(K)	8440-8550	18	$\alpha_K < 1.1$	14	$\alpha_K < 1.4$
247 Md + CE(L)	8550-8650	6	$\alpha_L < 0.6$		

(upper limits, contributions of ²⁴⁶Md ignored !!!!)