Conversion of some neutron-excess isotope chemical forms available at the market into compounds suitable for effective feeding of a cyclotron ECR ion source for production highly intense ion beams

V.Ya. Lebedev, S.L. Bogomolov, S.N. Dmitriev, V.B. Kutner, A.B. Yakushev

Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Russia

Production of highly intense ion beams of rare and very expensive isotope ⁴⁸Ca is the main problem in attempts of the synthesis of superheavy elements.

How to produce the beams?

Choose a proper working substance (chemical form of element to be used as a projectile) and a technique of feeding an ECR ion source with it.

One needs working substances with:

- 1. high atomic content of the element in molecule,
- 2. relatively high volatility at moderate temperatures for a fine adjustment of the evaporation rate,
- 3. absence in the molecule of working substance of elements littering an ECR ion source and disturbing its work.

Evaporation techniques to feed an ECR ion sources with working substances

1.**Ion sputtering** (negatively biased metallic sample is placed close to the ECR plasma so that positive ions from the plasma are accelerated toward the sample striking its surface and metal atoms are evaporated).

2.**Laser ablation**(laser evaporation of solid material in an ion source)

3.**Plasma heating** (a rod of metal or oxide is inserted into the plasma where energetic plasma electrons vaporize the sample).

4.**Oven heating** (a metal or chemical compound is evaporated from a crucible).

5.**MIVOC** (Metal Ion from Volatile Compounds) – sublimation or vaporation of organometallic or other volatile compounds (with vapour pressure > 0.1 Pa) at room temperature.

6. Evaporation through a reaction with a plasma support gas (refractory metal or oxide reacts with reactive plasma support gas : for example, SF_6 reacts with a metal yielding volatile fluorides).

MIVOC (Metal Ion from Volatile Compounds) – sublimation or vaporation of organometallic or other volatile compounds (with vapor pressure > 0.1 Pa) at room temperature;

+ low consumption rate (expensive isotopes may be used),

+ the evaporation is independent of the plasma characteristics and can be tuned finely,

- + the technique allows to reach high currents of metal ions,
- + easy way to feed an ion source,
- carbon contamination of a source,
- difficult to optimize the charge state distribution with support gas because of a large amount of C and H ions.

BUT

1. Calciocenes are polymeric solids.

2. Volatile calcium compounds used for a CVD technique have very low calcium ratio in molecule $(Ca(hfa)_2 \times tetraglyme, where hfa - 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, has a ratio of 1:65).$

3. Very low yields in syntheses.

Oven heating

+ low consumption rate (expensive isotopes may be used),

+ the evaporation is independent of the plasma characteristics and can be tuned finely,

+ the technique allows to reach high currents of metal ions,

+ different kinds of chemical compounds can be used for evaporation

- only temperature below 1550 °C is available.

These considerations and our experiments have showed, that the best way of producing highly intense calcium ion beams is evaporation of metallic calcium by oven heating in an ECR ion source.

MIVOC (Metal Ions from Volatile Compounds) for ⁵⁸Fe and ⁶⁴Ni

 ${}^{58}\text{Fe} + \text{Cl}_2 \rightarrow {}^{58}\text{FeCl}_3$, yield - >90%

⁵⁸FeCl₃ + C₅H₅Na \rightarrow ⁵⁸Fe(C₅H₅)₂, yield ~ 80%

Vapour pressure $(20^{\circ}C) - 1.7 \times 10^{-3}$ mbar

Radiotracer control

⁵⁸Fe (n, γ) ⁵⁹Fe, ⁵⁹Fe : β -decay, $T_{1/2} = 44.6$ d, $E_{\gamma} = 1099$ keV

 $[^{64}Ni(NH_3)_6]Cl_2 + C_5H_5Na \rightarrow {}^{64}Ni(C_5H_5)_2$, yield ~ 90%

Vapour pressure $(20^{\circ}C) - 3.5 \times 10^{-3}$ mbar

Production of metallic ⁴⁸Ca

Mixture ${}^{48}CaO + Al$ (50-70% excess of Al)

 $33CaO + 14Al = 21Ca + 12CaO \times 7Al_2O_3$ T = $1200 - 1300^{\circ}C$

 $12CaO \times 7Al_2O_3 + Al = 12Ca + 11Al_2O_3$ T = 1300 - 1350°C

Yield -50-65%, production rate -10-20 mg/h

Radiotracer control

CaO + Al mixture was irradiated with $E_e = 22$ MeV bremsstrahlung

⁴⁸Ca(γ,n) ⁴⁷Ca; ⁴⁷Ca - β-decay, $E_{\gamma} = 1297$ keV, $T_{1/2} = 4.54$ d

Production of metallic ²⁶Mg

Mixture of $^{26}MgO + Al$

 $3MgO + 2Al = 3Mg + Al_2O_3$ T = 1200°C, T _{cond} = 200°C

Yield - 90%

Scheme of ⁴⁸Ca recuperation

- 1. Dissolving of a 12CaO x 7Al₂O₃ residue from the ⁴⁸Ca reduction process in conc. HCl acid.
- 2. Filtration and evaporation of HCl solution up to 10-15 ml.
- 3. Dilution of the solution to adjust calcium concentration of ~ 0.5 g/l.
- 4. Addition to the boiling solution diluted ammonia solution (1:4) till pH = 7.
- 5. Boiling of a precipitate in the maternal solution during 2 min., filtration on a paper filter and washing of the precipitate with hot 2% NH₄Cl solution.
- 6. Addition to the boiling filtrate 4% ammonium oxalate solution and boiling during 2 min.
- 7. Filtration of a calcium oxalate on a track membrane after cooling of the solution, drying of a precipitate at 90-100°C.
- 8. Incineration of the calcium oxalate at 1100°C to produce ⁴⁸CaO for the reduction process.

EFFICIENCY of the ECR4M + U400

Synthesis of superheavy elements

Nuclear	At a target		Consumption	
reactions	Beam intensity,	pps Beam dose	rate, mg/h	
238 U (48 Ca, 3n) 283 11	2 2×10^{12}	$3.5 \ge 10^{18}$	0.4	
242 Pu (48 Ca, 3n) 287 1	4×10^{12}	7.5 x 10 ¹⁸	0.5	
244 Pu (48 Ca, 4n) 288 1	4×10^{12}	1 x 10 ¹⁹	0.5	
244 Pu (48 Ca, 3n) 289 1	$14 4 x 10^{12}$	5.2 x 10 ¹⁸	0.5	
²⁴⁸ Cm (⁴⁸ Ca, 4n) ²⁹² 1	16 6×10^{12}	8 x 10 ¹⁸	0.75	

In future

1. Ion current increasing up to $9x10^{12}$ pps due to elimination of the external channel of injection of the ECR-4M.

2. Target thickness increasing up to 1 mg/cm^2 .

It will be possible to synthesize 1 atom of element 114 per 3-4 days, so that investigations of its chemical properties become real.

Conversion of SF₆ to other compounds of sulphur

- 1. A packed bed in a thick-walled quartz tube (a reactor) was a ceramic material(crushed baked clay tubes) boiled in $PdCl_2$ solution and dried at $100^{\circ}C$.
- 2. Dry H_2 was transported through the reactor and reacted at room temperature with $PdCl_2 \ge 2H_2O$ on a ceramic surface yielding a thin layer of palladium as a catalyst.
- 3. A mixture of $SF_6 + H_2$ (5-to 10-fold excess) reacted at 700°C over the catalyst in the reactor: $SF_6 + 4H_2 = H_2S + 6HF$
- 4. HF was absorbed in a water scrubber made of teflon.
- 5. H_2S reacted with J_2 in KJ_3 scrubbers: $H_2S + KJ_3 = S + 2HJ + KJ$
- 6. Unreacted $SF_6(<10\%)$ was frozen in a liquid nitrogen trap to be used again in the conversion reaction.
- 7. Sulphur was washed by a hot KJ solution to remove the iodine impurity and was recrystallized in benzene.
- 8. Sulphur was burnt in a quartz tube in the mixture of dry oxygen and helium and resulting SO₂ was collected in U-tube cooled by vapour of liquid nitrogen.

About 200 L of SF₆ enriched in ³⁴S (80-99%) was converted to S and SO₂ with small losses. The technique may be applied to SF₆ enriched in very expensive ³⁶S.

²³⁸U (³⁶S, 4n) ²⁷⁰108 instead of ²⁴⁸Cm (²⁶Mg, 4n) ²⁷⁰108

Conversion of SF₆

 $H_2 + PdCl_2 x 2H_2 O = Pd + 2HCl + 2H_2 O$ $4H_2 + SF_6 = H_2 S + 6HF T = 700°C$ $H_2 S + KJ_3 = S + 2HJ + KJ$

