Workshop on recoil separator for superheavy element chemistry

GSI, Darmstadt 20-21 March, 2002

Transmission of the JYFL gas-filled recoil separator RITU

M. Leino

University of Jyväskylä, Department of Physics

Related talks from JYFL:
J. Uusitalo: Windowless operation of the JYFL gas-filled recoil separator
T. Enqvist: About the design of a gas-filled separator

RITU

History

- Design based on experience from SASSY1, NASE
- Designed for studies of heavy and superheavy . elements
- DQQ \rightarrow QDQQ
- Magnets, power supplies from Danfysik
a Operation started in 1993
- Total cost 320,000 euros

Present

- Jurosphere campaigns
- SACRED campaigns
- about 55 RDT experiments mainly in the Pb region and around ${ }^{254} \mathrm{No}$
- 22 new isotopes from ${ }^{164} \mathrm{Ir}$ to ${ }^{211} \mathrm{Th}$

Future

- Juroball in 2003
- GREAT in 2002

RITU parameter values

Magnetic configuration	$\mathrm{Q}_{\mathrm{v}} \mathrm{DQ}_{\mathrm{h}} \mathrm{Q}_{\mathrm{v}}$	D^{2} pole gap	100 mm
Maximum beam rigidity	2.2 Tm	Q_{1} maximum grad.	$13.5 \mathrm{~T} / \mathrm{m}$
Bending radius	1.85 m	Q_{1} effective length	350 mm
Acceptance	8 msr	Q_{1} aperture diameter	105 mm
Dispersion	$10 \mathrm{~mm} / \%$	$\mathrm{Q}_{2,3}$ maximum grad.	$6.0 \mathrm{~T} / \mathrm{m}$
Mass resolving power	100	$\mathrm{Q}_{2,3}$ effective length	600 mm
Dipole bending angle	25°	$\mathrm{Q}_{2,3}$ aperture diameter	200 mm
Dipole entrance angle	0°	Total weight	17500 kg
Dipole exit angle	-25°	Total length	4.8 m

M. Leino et al. Nucl. Instr. Meth. B 99 (1995) 653

New dipole chamber and beam stop

$\%$

Y - MAXX $=+/-$
0.200 IUU
l-HMX $=4.687 \quad$ LUU

X-MAX $=+/-\quad 0.100$ TLU $\quad Z$-MAX $=4.687 \quad$ LLU

Transmission of RITU

Methods used for determination:

- Comparison with SHIP and VASSILISSA data
- Recoil Decay Tagging experiments
- Support from calculations

Effect of Q_{1} on transmission:
$\approx+30 \%$ for $\mathrm{A}_{1} / \mathrm{A}_{2} \approx 0.12$

Typical values from cross section data

Reaction	Meas.	Calc.
$\left.{ }^{208} \mathrm{Cb}^{18} \mathrm{O}, 4 \mathrm{n}\right)^{222} \mathrm{Th} 0.25 \mathrm{mg} / \mathrm{cm}^{2}$	0.15	0.12
${ }^{208} \mathrm{~Pb}\left({ }^{22} \mathrm{Ne}, 4 \mathrm{n}\right)^{226} \mathrm{U} 0.40 \mathrm{mg} / \mathrm{cm}^{2}$	0.15	0.14
${ }^{2018} \mathrm{~Pb}\left({ }^{5} \mathrm{Ti}, 1 \mathrm{n}\right)^{257} \mathrm{Rf} 0.45 \mathrm{mg} / \mathrm{cm}^{2}$	0.55	0.68
${ }^{175} \mathrm{Lu}\left({ }^{40} \mathrm{Ar}, 4 \mathrm{n}\right)^{211} \mathrm{Ac} 0.45 \mathrm{mg} / \mathrm{cm}^{2}$	0.45	0.50

Typical values from RDT experiments

Reaction	Meas.	Calc.
$\left.{ }^{172} \mathrm{Yb}\left({ }^{28} \mathrm{Si}, 4 \mathrm{n}\right)\right)^{196} \mathrm{Po} 0.45 \mathrm{mg} / \mathrm{cm}^{2}$	0.26	0.30
${ }^{141} \operatorname{Pr}\left({ }^{40} \mathrm{Ar}, 4 \mathrm{n}\right){ }^{177} \mathrm{Ir} 0.45 \mathrm{mg} / \mathrm{cm}^{2}$	0.50	0.53

