

3rd Workshop on Recoil Separator for Superheavy Element Chemistry and Physics

GSI, Darmstadt, August 27, 2004.

Recent results from FLNR

A.G. Popeko

Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia

Excitation functions of the ⁴⁸Ca + ²³³U, ²³⁸U, ²⁴²Pu, ²⁴⁴Pu + xn

2

Decay Chains Observed in ²⁴³Am + ⁴⁸Ca Reaction

CHEMICAL IDENTIFICATION of the element Db as decay product of the element 115 in the ⁴⁸Ca + ²⁴³Am reaction

FLNR (Dubna):

Yu. Oganessian, S. Dmitriev, V. Utyonkov, S. Shishkin, A. Yeremin, G. Vostokin,
N. Aksenov, Yu. Lobanov, V. Chepygin, E. Sokol, Yu. Tsyganov, G. Gulbekian,
A. Mezentsev, S. Tretiakova, M. Voronuk, A. Voinov, O. Malyshev, V. Gorshkov,
M. Hussonnois, J. Kim, M. Itkis

PSI, University of Bern (Switzerland):

D. Schumann, H. Bruchertseifer, R. Eichler, H. Gäggeler

LLNL (Livermore, USA):

J. Wild, M. Stoyer, D. Shaughnessy, J. Kenneally

Irradiation of ²⁴³Am-target with ⁴⁸Ca-ions

Taking off thin layer of Cu-catcher (100÷150 mg of Cu)

Chemical isolation of Db

- Dissolution of the Cu-cuttings in HNO₃ conc.
- Addition of the La³⁺ (0.7 mg), tracers (^{92m}Nb, ¹⁷⁷Ta, ¹⁶⁷Tm, ¹⁶⁹Yb) and carriers Nb, Ta (1 μg)
- Precipitation of La(OH)₃ by NH₄OH (La, Nb, Ta, Db, Ac precipitate; Cu-solution) 3 times (Nb, Ta ≈99%)
- Dissolution of the La(OH)₃ in 2M HNO₃
- Sorbtion of La, Ac, Nb, Ta, Db on Dowex 50 (cation-exchange resin)
- Elution of group 5 elements (Nb, Ta, Db) with 2 ml 1M HF
- Evaporation of the solution to 0.1 ml
- Pipetting of the 0.1 ml solution on a PE-foil (40 μ g/cm²) $\Sigma \approx 3$ hr (^{92m}Nb $\approx 85\pm5\%$)

 $(^{177}\text{Ta} \approx 75 \pm 5\%)$

Detection system

 3 He - neutron detector neutron moderator Nb/Ta - chemical fraction 4π - fission fragment detectors

$^{48}Ca + ^{243}Am$

31.07.04

N Sample (data)	t _{irr} hr	Beam Dose	$\underline{\mathbf{E}}_{\underline{\mathbf{bot}}}$ + \mathbf{E}_{top} + Nn (t,µs)	t _{detect} hr	t _{measurement} hr
1 (12.06)	20	2,5·10 ¹⁷	120+126+2n (5;64)	20	429
2 (13.06)	22	3,7·10 ¹⁷	-+86+1n (57)	74	186
3 (14.06)	22	3,4·10 ¹⁷	131+124+1n (3)	131+124+1n (3) 15	
			116+122+2n (8;16)	72	385
4 (15.06)	22	2,9·10 ¹⁷	104+120+1n (2)	22	
			97+125+1n (151)	29	358
			100+128+1n (89)	51	
5 (17.06)	38	6,7·10 ¹⁷	117+118+2n (6,98)	6	
			108+107+3n (4,31,43)	9	
			110+104+0n (89)	15	476
			0+76+2n (6,41)	68	
6 (18.06)	23	3,9·10 ¹⁷	120+114+2n (2,2) 39		453
7 (19.06)	22	3,6·10 ¹⁷	-	-	429
8 (21.06)	45	7,4·10 ¹⁷	119+110+2n (5;33)	5	382
			118+105+2n (72,165)	93	
			65+58+3n (12,19,29)	174	
		Σ 3,4·10 ¹⁸	15 events		9

Total Kinetic Energy distributions of ²⁵²Cf and ²⁶⁸Db

Average numbers of prompt neutrons emitted in spontaneous fission

 $^{243}Am + ^{48}Ca \xrightarrow{3n} ^{288}115 \xrightarrow{5\alpha} ^{268}Db$

	DGFRS	CHEMISTRY		
Target Thickness	0.36 mg·cm ⁻²	1.15 mg·cm ⁻²		
Energy Range	3.3 MeV	10,5 MeV		
Transmission	~ 35%	80±5%		
Beam Dose	4.3·10 ¹⁸	3.4 ·10 ¹⁸		
Events Number	3	15		
Decay Mode	SF	SF		
Half Life	16 ⁺¹⁹ ₋₆ hr	27 ⁺¹¹ ₋₆ hr		
Cross section	2.7 ^{+4.8} _{-1.6} pb	4.7 ^{+1.8} _{-1.3} pb		

> TKE = 227 MeV > $< v > = 4.1 \pm 0.8$ > Off-line experiment at MASHA

Mass Analyzer of Super Heavy Atoms

MASHA test with Xe and Hg isotopes

²⁴²Pu(⁴⁸Ca, 3n)²⁸⁷114

Irradiation of ²³⁸U target with ⁴⁸Ca ions Experimental conditions and results

Time-of-flight - strip number distribution for ²⁸³112

 $280 \le A \le 286$

Search for SHE in nature theory and experiment

Chart of the nuclides 2004

proton number

Z	А	No. I observed ^{a)}	Decay mode, branch ^{b)}	Half-life ^{c)}	Expected half-life	$E_{\alpha}(\text{MeV})$	$Q_{\alpha}(\text{MeV})$
118	294	1/1	α	$1.8^{+75}_{-1.3}\mathrm{ms}$	0.4 ms	11.65±0.06	11.81±0.06
116	293	3/3	α	$53^{+62}_{-19}\mathrm{ms}$	80 ms	10.53±0.06	10.67±0.06
	292	4/5	α	$18^{+16}_{-6}{ m ms}$	40 ms	10.66±0.07	10.80±0.07
	291	2/2	α	$6.3^{+11.6}_{-2.5}\mathrm{ms}$	$20\mathrm{ms}$	10.74±0.07	10.89±0.07
	290	2/2	α	$15^{+26}_{-6}{ m ms}$	10 ms	10.85±0.08	11.00±0.08
114	289	8/8	α	$2.7^{+1.4}_{-0.7}\mathrm{s}$	2 s	9.82±0.06	9.96±0.06
	288	12/11	α	$0.80^{+0.32}_{-0.18}s$	0.8 s	9.95±0.07	10.09±0.07
	287	15/15	α	$0.51^{+0.18}_{-0.10}s$	0.5 s	10.02±0.06	10.16±0.06
	286	11/5	α: 0.4 SF: 0.6	$0.16^{+0.07}_{-0.03}s$	0.2 s	10.20±0.06	10.35±0.06
112	285	8/8	α	$34^{+17}_{-9}s$	50 s	9.16±0.06	9.29±0.06
	284	12	SF	$101^{+41}_{-22}\mathrm{ms}$			≤9.85
	283	18/18	α: 1 SF: ≤0.1	$4.0^{+1.3}_{-0.7}\rm{s}$	3 s	9.54±0.06	9.67±0.06
	282	6	SF	$0.50^{+0.33}_{-0.14}\mathrm{ms}$			≤10.82
110	281	8	SF	$9.6^{+5.0}_{-2.5}\mathrm{s}$			≤9.05
	279	21/2	α: 0.1 SF: 0.9	$0.18^{+0.05}_{-0.03}s$	0.2 s	9.70±0.06	9.84±0.06
108	275	2/2	α	$0.15^{+0.27}_{-0.06}s$	0.8 s	9.30±0.07	9.44±0.07
106	271	2/1	α: 0.5 SF: 0.5	$2.4^{+4.3}_{-1.0}$ min	0.8 min	8.53±0.08	8.65±0.08
104	267	1	SF	$2.3^{+98.}_{-1.7}{ m h}$			≤8.22

Decay properties of nuclei produced in the ⁴⁸Ca-induced reactions

^a Number of events used for calculations of half-lives / α -particle energies, respectively. ^b Branching ratio is not shown if only one decay mode was observed.

^e Error bars correspond to 68%-confidence level if more than one event was observed, for only one registered event the error bars correspond to 95%.