Studies of the Reaction ⁴⁸Ca + ²³⁸U @ BGS

Ken Gregorich¹, Walter Loveland², Don Peterson²,

Peter Zielinski¹, Sarah Nelson¹,

Ralf Sudowe¹, Christoph Düellmann¹, Charles M.Folden III¹, Joshua Patin¹, Robert Eichler³, Sondra Soverna³, Kjell Aleklett⁴, C. Rouki², Heino Nitsche¹, Darleane Hoffman¹

(1) LBNL, Nuclear Science Div., Heavy Element Group
(2) OSU, Chem. Dept, Nuclear Chemistry
(3) PSI, Labor fürRadio- und Umweltchemi
(4) Uppsala U., Chemistry Department

(There has been NO INDEPENDENT CONFIRMATION of ANY isotope with A > 277)

Goal: Independent confirmation of ONE of the DUBNA SHE results

Berkeley Gas-filled Separator (BGS)

- Construction "completed" fall 1999
- Recycled Bevalac magnets
- Innovative design gives Ω =45msr
- 70° bend gives superior separation
- ~1 mBar He fill gives full momentum and charge acceptance

- Beam rejection up to 10¹⁵
- Transit time ~µs
- Rotating target allows beam intensities up to pµA range
- Beam intensity, target thickness, and efficiency give 1 event/(picobarn*week)

²⁸³112 history ²³⁸U(⁴⁸Ca,3n)²⁸³112

1999:	Vassillissa	2 SF observed	5.6 pb	@ 231 ± 3 MeV	half-life = 81 sec
		No SF observed <	4.0pb	@ 238 ± 3 MeV	

1999: Vasillissa SF observed after 10.29-MeV α -decay of ²⁸⁷114 new ²⁸³112 half-life = 3 min

2001: **BGS** No SF observed < 1.6 pb @ 228-234 MeV Bρ(in He) = 2.19-2.31 Tm

2001: **Dubna** Chemistry ~2.0 pb fissions could be long-lived ²⁸³112 with Rn-like Chemistry

2002: **BGS** No SF observed < 0.8 pb @ 228-234 MeV Bp(in He) = 2.19-2.31 Tm

2003: **PSI@GSI** Hg-Rn chemistry gave inconclusive result (sensitive only to long-lived SF activity)

2003: DGFRS 9.5-MeV α after 10.0-MeV α -decay of ²⁸⁷114 half-life ~ 5s seen in both ²⁴⁴Pu(⁴⁸Ca,5n)²⁸⁷114 and ²⁴²Pu(⁴⁸Ca,3n) reactions

2003: Vassilissa No SF observed < 1.2 pb @ 231±3 MeV

	2 SF observed	~ 4.0 pb	@ 234± 3 MeV	new 283 112 half-life = 5.1 min
2004: DGFRS	9.5 MeV α	~1.3 pb	@ 231±3 MeV	half-life ~4s
	9.5 MeV α	~2.5 pb	@ 234±3 MeV	half-life ~ 4s
	None observed	<1.3 pb	@ 240±3 MeV	
2004: BGS	No SF observed	l < 0.96 pb	@ 233-238 MeV I	Bρ(in He) = 2.19-2.31 Tm

²⁸³112 Cross Sections and Upper Limits

Why Don't We see 4-s 9.54-MeV ²⁸³112?

Is there a problem with the BGS targets?

Is there a systematic difference in beam energies from the accelerators at LBNL and Dubna?

Do we have a different beam energy in our uranium targets due to errors in energy loss calculations?

Did we run the BGS at the wrong magnet settings?

Are the UF₄ Targets Any Good?

Targets are 475-611 μ g/cm² UF₄ evaporated onto 2- μ m Al foils. This thickness is good for the BGS.

Are the UF₄ Targets Any Good? Are the 475-611 µg/cm2 targets too thick?

Monte Carlo sim. of particle trajectories in gas-filled magnets BGS efficiency for ²³⁸U⁽⁴⁸Ca,3n)²⁸³112

59%

BGS efficiency for $^{238}U(^{48}Ca,\alpha n)^{281}Ds$

42%

Are the UF₄ Targets Any Good?

Targets are 475-611 μ g/cm² UF₄ evaporated onto 2- μ m Al foils. This thickness is good for the BGS.

On two sets of targets, some of the UF_4 flaked off the Al foils during the first minutes of irradiation (with low-intensity ⁴⁸Ca beams). Luminocity is determined by # of Rutherford-scattered ⁴⁸Ca ions . . . The cross section limits given are correct.

 α -spectroscopy of the ²³⁸U shows no large change in the thickness of the UF₄ layer.

 α -particle energy loss measurements indicate that there is no large change in of UF₄ thickness or Al thickness during the experiments.

Atomic Force Microscopy shows a change in the UF_4 structure. Thickness variations are within acceptable limits.

Conclusion: Targets are good (although not perfect)

Why Don't We see 5-s 9.5-MeV ²⁸³112?

Is there a problem with the BGS targets? Yes, but luminocity is determined with Rutherford-scattered beam.

Is there a systematic difference in beam energies from the accelerators at LBNL and Dubna? No, ⁴⁸Ca + ²⁰⁸Pb excitation functions match to within 2 MeV.

Do we have a different beam energy in our uranium targets due to errors in energy loss calculations? No, pulse-height of Rutherford-scattered ⁴⁸Ca is within ~1 MeV.

Did we run the BGS at the wrong magnet settings?

What is the ²⁸³112 magnetic rigidity? Back to basics...

What is the ²⁸³112 magnetic rigidity? According to Ghiorso and Armbruster ... Clearly, the electronic shell structure $B\rho/A = 7.96$ $B\rho = 2.25$ Tm of the stripped ion is important 4f 5d--6d-5f 12 $B\rho/A (Tm * 10^{-3})$ $VIV_0 = 4$ 5f $V/V_0 = 2.2$ 5d 6d-IC 9 8 0 •) Dubna -5p,6s-▲ Jülich 5d-• LBL (slow) 30 40 50 60 70 80 90 120 100 110

Ζ

What is the ²⁸³112 magnetic rigidity?

The Armbruster/Ghiorso plot suggests a sinusoidal correction . . .

Semi-empirical understanding of why this works:

If the stripped ion is in an f-orbital, the most loosely bound electrons are inner electrons, and are less available for stripping by the gas, giving a lower q.

If the stripped ion is in a p-orbital, the most loosely bound electrons are outer electrons, and are readily available for stripping by the gas, giving a higher q.

 $V_0 Z^{1/3}$ But problems arise at low velocities!

What is the $^{283}112$ magnetic rigidity? Iodine and uranium data show a break at v = $1.6v_0$

The red lines trend toward q = 2.5 at v = 0 because the first of ionization potential of He is 25 eV. This is usually between the second and third ionization potentials of heavy elements.

What is the ²⁸³112 magnetic rigidity? Putting it all together . . .

 $v/v_0 = 2.35 (>>1.6)$ no slow EVR correction

 $(v/v_0)Z^{1/3} = 11.33$ gives q = 6.86 in the region of best fit to q vs. $(v/v_0)Z^{1/3}$ data

 $B\rho = 2.20 \text{ Tm}$

compares well with RIKEN and SASSY predictions of 2.17 Tm and 2.25 Tm

What is the ²⁸³112 magnetic rigidity? Estimating the uncertainty in the ²⁸³112 Bp prediction

What is the ²⁸³112 magnetic rigidity? Effect of the uncertainty in the ²⁸³112 Bp prediction

$$\begin{split} B\rho &= 2.20 \pm 0.032 \\ B\rho &= 2.20 \pm 1.5\% \end{split}$$

BGS $\delta x'/\delta B\rho = 1.8 \text{ cm}/\%$

16-cm wide MWAC and 18-cm wide Si-strip array: detector covers 9% in Bp (+/- 4.5%)

a 3σ Bp error results in half of the EVR distribution missing the detector, and would double the cross section upper limits.

Why Don't We see 5-s 9.5-MeV ²⁸³112?

Is there a problem with the BGS targets? Yes, but luminocity is determined with Rutherford-scattered beam.

Is there a systematic difference in beam energies from the accelerators at LBNL and Dubna? No, ⁴⁸Ca + ²⁰⁸Pb excitation functions match to within 2 MeV.

Do we have a different beam energy in our uranium targets due to errors in energy loss calculations? No, pulse-height of Rutherford-scattered ⁴⁸Ca is within ~1 MeV.

Did we run the BGS at the wrong magnet settings? No, this would require a 3σ deviation from systematics.

²⁸³112 Cross Sections and Upper Limits

What's next?

Development of ²⁴⁴Pu target capability

²⁴⁴Pu(⁴⁸Ca,xn)²⁹²114 in 2005

Radiochemistry with BGS-RTC using reactions such as

Rf:	²⁴⁴ Pu(²² Ne,5n) ²⁶¹ Rf	$t_{1/2} = 78 \text{ s}$	²⁰⁸ Pb(⁵⁰ Ti,n) ²⁵⁷ Rf	$t_{1/2} = 4 s$
Db:	²⁴⁴ Pu(²³ Na,5n) ²⁶² Db	$t_{1/2} = 34 \text{ s}$	²⁰⁹ Bi(⁵⁰ Ti,n) ²⁵⁸ Db	$t_{1/2}^{1/2} = 4 \text{ s}$
Sg:	244 Pu(26 Mg,5n) 265 Sg	$t_{1/2} = 17 \text{ s}$		
Bh:	²⁴⁴ Pu(²⁷ Al,4n) ²⁶⁷ Bh	$t_{1/2} = 17 \text{ s}$		
Hs:	²⁴⁴ Pu(³⁰ Si,5n) ²⁶⁹ Hs	$t_{1/2} = 19 \text{ s}$		

112:
244
Pu(⁴ Ca,3n)²⁸⁷114 \rightarrow ²⁸³112 t_{1/2} = 4 s

. . .

The LBNL 88-Inch Cyclotron

K130 Sector focused cyclotron $A/q \le 5$ for Coulomb Barrier

AECRU (present) and VENUS (Spring '05)

First Operation in 1961

What is the ²⁸³112 magnetic rigidity? According to RIKEN GARIS systematics ...

AFM of the edge of the UF₄ layer (outside the visible beam stripe)

Overall UF₄ thickness is 900 nm

Crystalline structure

Thickness variations up to +/- 2%

AFM of the center of the UF4 layer (inside the visible beam stripe)

Overall UF4 thickness 900 nm

large-scale melting of UF₄

Variations up to +/- 20%

RMS thickness variations are much less than 10%

Why Don't We see 4-s 9.54-MeV ²⁸³112?

Is there a problem with the BGS targets?

Is there a systematic difference in beam energies from the accelerators at LBNL and Dubna?

Do we have a different beam energy in our uranium targets due to errors in energy loss calculations?

Did we run the BGS at the wrong magnet settings?

Is there a systematic difference in beam energies from the two accelerators?

Measurement of ²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No shows that . . .

Absolute beam energy is accurate to within 1% (from comparison of excitation functions at right)

Beam energy reproducibility is accurate to within 0.5% FWHM (from a plot of pulseheight in a PIN diode vs. the square of the cyclotron frequency)

Are there errors in the energy loss calculation?

Measurement of pulse-heights for Rutherford-scattered beam particles, and a comparison with those for the Ca + Pb reactions show that the energies in our ${}^{48}\text{Ca} + {}^{238}\text{U}$ experiments were accurate to within 0.5% (1.2 MeV)

Conclusion: There is no doubt that our **TWO BEAM ENERGIES** cover the peak of the Dubna excitation function.

Run052	RE Ca + ²⁰⁶ Pb	RW Ca + ²⁰⁶ Pb	RE Ca + ²³⁸ U	RW Ca + ²³⁸ U	Run070	RE Ca + ²⁰⁷ Pb	RW Ca + ²⁰⁷ Pb	RE Ca + ²³⁸ U	RW Ca + ²³⁸ U
48Ca E at end of tgt	211.7	211.7	227.6	227.6	48Ca E at end of tgt	211.8	211.8	233.5	233.5
⁴⁸ Ca E after scatter	202.7	202.4	218.0	217.6	⁴⁸ Ca E after scatter	202.8	202.5	223.6	223.3
E-P.H.D.	197.7	197.4	212.8	212.4	E-P.H.D.	197.8	197.5	218.3	218.0
peak channel	1743.7	2348.5	1884.5	2527.5	peak channel	1556.7	1585.8	1724.2	1763.5
E by Ruth. Ratio			213.7	212.4	E by Ruth. Ratio			219.1	219.6